
Self Port Scanning Tool: Providing a More Secure Computing Environment
Through the Use of Proactive Port Scanning

Joshua E. Kocher
UC Berkeley

jkocher@berkeley . edu

Dr. David P. Gilliam
Network and Computer Security Group, Jet Propulsion Laboratory

dpg@jpl.nasa.gov

Abstract

Secure computing is a necessity in the hostile
environment that the internet has become. Protection
from nefarious individuals and organizations
requires a solution that is mors a methodology than
a one time fa. One aspect of this methodology js
having the knowledge of which network ports a
computer has open to the world, These network
ports are essentially the doorways from the internet
into the computer. An assessment method which uses
the nmap sof iare to scan ports has been developed
to aid System Administrators (SAs) with analysis of
open ports on their system(s). Additionally, baselines
for several operating systems have been developed so
that SAs can compare their open ports to a baseline
for a given operating system. Further, the tool is
deployed on a website where SAs and Users can
request a port scan of their computer. The results
ure then emailed to the requestor. This tool aids
Users, SAs, and security professionals by providing
an overall picture of what services are running, what
ports are open, potentiaI trojan programs or
backdoors, and what ports can be closed.

1. Introduction

The Jet Propulsion Laboratory (JPL) desired to
have avaiIable a tool for System Administrators
(SAs) to scan for open ports on a computer system
and compare the scan results with a description of
standard services that use those ports by operating
system. The intelligence gathered by the tool
matched what ports were considered safe to have
open for services that used them and what open ports
could pose a risk. Many times ports are open on a
computer by default, while the user or SA is unaware

or does not have knowledge of what service(s) may
be using them. A tool was developed to address this
problem to aid the SA in assessing what ports are
needed for essential services, and what services can
be safely turned off and what ports can be closed.
The tool that was developed is an enterprise, port
scanning tool accessibk through a web interface.
Reports generated from the port scan are then
emailed to the SA and the User of that computer
system to ensure that only authorized people are
provided the information.

Most of the intrusions into computer systems,
whether by a wodvirusitrojan program or an
individual, are accomplished by exploiting a service
or application vulnerability on a system through an
open port. Often, the user is unaware of what
services are running. Some of these services may not
be needed and can be shut down. To do this, one
needs knowledge of what services are running over
which ports and what the services are, and which
services can be shut down or disabled.

One example is the default installation of
Windows, which shares the hard drives across the
Server Message Block (SMB) protocol. Though
these shares are unable to be seen from another
windows computer, they can be accessed directly
with Windows or listed with the Linux
implementation of the protocol, SAMBA [I].
Although a password is required to access
administrative shares on a Windows system,
passwords can be compromised, thus making the
open network share a security risk. If the
administrative share is not needed, the administrative
shares can be disabled. By scanning systems for
open ports and identifying the services using those
ports, SAs and users can be made aware of potential
security risks and take steps to mitigate them. The

port scanning tool developed at JPL improves
provides for this capability.

2. Overview of the Self-Port Scanning
(SPS) Tool

The Self Port Scanning (S P S) tool is basically an
interface to m a p [2] , a de-facto standard of port
scanning tools. The user of the tool has the option to
perform a port scan and have only the results of the
scan emailed to them or they can have the results
emailed to them along with baselines, allowing them
to compare their scan results to the baselines. The
baselines are a list of ports and services using those
ports with a severity rating of running a particular
service on a given operating system.

When a system is requested to be scanned the
user is required to authenticate through the web
server hosting the SPS tool. The SPS tool scans the
system from which the request is being made if it is
the user of the system. If it is an SA who is
requesting another system to be scanned, the tool
verifies that he or she is, in fact, responsible for that
computer system using a Domain Name System
(DNS} query to a database containing this
information. Once the system is scanned, the results
are then emailed to the SA and to the user of the
computer system. Figure 1 shows the process for
requesting such a scan.

The SPS has a three level severity rating system.
The severity rating is divided into three color-coded
sections, much like a traffic light. A green color
signifies ports that are usually safe to have open and
used by well-known services. A yellow color
identifies those ports that are cautionary ports (i.e.
services that should only be run if absolutely
necessary or are unknown as to what service is using
it}. A red color identifies those ports that are
commonly associated with use by hackers and
backdoor programs for unauthorized access to a
system and which should be scrutinized more
carefully by SAs and users.

There is also a backend interface for the
administrators of the SPS tool to use in setting and
updating the baselines used for comparisons by
computer system and operating system. This backend
is similar to many of the content management
systems used on the web. Thus, an SA who has
identified ports which the tool indicates as potentially
unsafe (yellow), could, for a particular computer
system and operating system mark it as safe, SO that
subsequent scans will treat the identified port as
green.

To protect the entire system from unauthorized
access, authentication using encrypted user
identification and passwords is required. The system
provides authentication via the Lightweight Directory
Access Protocol (LDAF'), passing credentials to a
Kerberos server. The returned Kerberos credentials
are then validated by the tool against an internal file,
thus ensuring that passwords are not passed over the
network, preventing password sniffing attacks while
ensuring that onIy authorized users have access to the
SPS tool.

User connects to
scanner web page

i

i
User clicks through
interface to begin soan

Request is queued
until system is ready
to process the scan

Users' system is
scanned. Results are
compared to the
database.

I
Compared results are
then emailed to the
user and system
administrator
associated with the
IP address

Scan Life-Cycle

Figure 1 : Self-Port Scanning Tool Process Flow

3. Security of the SPS Tool

A security assessment too1 that is not secure
itself is much like building a house with wood that is
already infested with termites. In the end it will cause
more headaches than it solves and wilI simply require
much more work to be done to fix the problem.
Security considerations have been a primary concern
throughout the development process of the SPS tool.

If the SPS tool were compromised, this tool would
change from a tool of protection into a potential
attack vector by providing information on what
systems may be vulnerable. Thus, protection from
usages of this tool in ways that were not intended has
been built into it fiom its inception.

One protection is that this tool only allows scans
to be run against computers that are within specified
subnets, thus circumventing the capability of
someone using this tool against a computer or group
of computers against outside the domain. In addition,
the SPS tool does not present report results through
the web interface. Instead, this tool emails the results
to the cognizant user(sj of the computer system(sj
being scanned and the cognizant SAs (as identified
by the Domain Name Service (DNS) server or
another specified internal process). These two
features prevent a person from scanning systems
indiscriminately to search for vulnerabilities that can
be exploited.

A further security protection is the web server
itself on which the SPS tool runs. It is critical to
have a highly secure and well-monitored web server
for running the tool. Locking down the web server
for such a tool is essential to protect the tool and its
service from being mohfied and used as an attack
tool.

The tool was developed using Perl and a SQL
database. During and following the development
process the code was verified to ensure that identified
unsafe libraries and routines were not used. Further
protections were implemented and the code verified
so as to circumvent vulnerabilities and unwanted
exposures in the tool code and user interface which
otherwise might be exploited. Some of these
vulnerabilities that were verified include common
attacks against the Common Gateway Interface
(CGI). This includes more advanced attacks such as
the Poison Null Byte [3], shell meta-character
insertion [3], and Structured Query Language (SQL)
injections as well as Iess technical attacks such as
providing invalid data through the Uniform Resource
Locater (URL).

The first of these four types is an attack that
allows for the writing of a file with a filename that
may be different than the one intended. Say, for
example, you are writing to a file where the fiIename
is variable but the extension is hard coded into the
application. Under normal operation, the user would
not be able to control the extension of the filename,
but if a null byte (kO0) is inserted into the filename,
the shell will interpret this to mean that the filename
has been terminated and thus will ignore anythkng
that follows. This attack has been mitigated by

removing all null characters in any input that is
received by the program.

The second attack involves passing special
characters that are recognized by the command line
interface or shell to be used for purposes of
controlling the flow of data, command execution,
etcetera. A list of common shell metacharacters can
be found in the WWW Security FAQ [4]. Usage of
she11 metacharacters has been eliminated from the
input into this tool by only allowing the characters
that were necessary for each input (i.e. an IP Address
will only contain up to three numbers followed by a
‘.’, and so on).

The third attack against CGI scripts is the SQL
injection. Though this attack isn’t actually an attack
against CGI scripts in particular, it does apply to this
research since SQL statements are used throughout
the software. This attack goes after vulnerable SQL
statements and is used to reveal more information
than is normally available. For example, a SQL
statement such as ‘SELECT * FROM database
WHERE name = $VAR’. In this statement, we are
selecting all the fields in each record where the
variable name equals the contents of $VAR. The
vulnerability in this method is if $VAR contains
more than just a name. If $VAR contained
‘somename OR 1=1’ then every record in the
database would be selected because even if name did
not equal some name, one would always equal one.
Protection from this attack is built into the Perl
Database Interface (DBI), instead of giving the actual
variable name while preparing the SQL statement, a
‘?’ is put in its place. This ‘?’ acts as a placeholder
for one item and only one item to go into, thus
protecting against SQL injections.

In addition to protecting against these three
different types of attacks against CGI scripts,
protection against one more less complicated attack
needed to be provided. Data that needs to be
preserved between instances needs to be stored in a
local session file, a cookie that is sent to the user, or
be passed back into the program via input through
the URL. The data passed between much of the user
interface in this tool is passed via the third method
which created an attack vector for tainting the data
that is processed by the program. Through noma1
use of the interface, the manipulation of hidden
vaIues in the page is impossible, but with a specially
crafted URL being sent into the program, the email
address that the report was sent to was found to be
vulnerable to such an attack. This attack would allow
for the use of the tool to arbitrarily scan any of the
computers on the JPL campus. Protection from such
attack was achieved by a simple check with the DNS

records for the Internet Protocol (IP) address of the
client that is connecting. If the email for the
cognizant user and cognizant admin supplied by the
URL does not match that fram the DNS records, the
email address from the DNS records is used.

4. Interface for the SPS Tool

A previously developed tool that allows users
and SAs to scan their computer for vulnerabilities
using Internet Security System’s (ISS) Internet
Scanner was developed to help SAs and users -to
secure their systems [SI. This ISS Self-scanning tool
was written in the Perl scripting language. For
consistency and to aid SAs and users of the SPS tool,
its graphical user interface (GUI) was also written in
Perl. The SPS tool thus acts as a counterpart to the
ISS self-scan tool. In the design of the SPS tool’s
interface, the existing Self Vulnerability Scanner’s
interface was used as a model to give the SPS tool a
familiar “look and feel” to make the Iearning curve
easier. Very little additional learning is required on
the part of the users of the SPS tool. Having the
same look and feel also aids the users in
understanding the results and the measures that can
be taken to remediate potential problems. This
approach is another security risk mitigation factor
that can aid in increasing the security posture of the
enterprise.

5. Robust Operation

Any tool that interfaces directly with users
should be able to respond to unexpected input
without running into problems. This is accomplished
in the interface for the SPS tool by only giving the
user the option of clicking on a single button to
continue through the scan starting process. No input
is expected to be received from the user and thus this
program does not suffer from malformed user input.
All input that is received through the URL is verified
with trusted services such as Secure LDAP, and IP
packet information. As previousIy mentioned in the
security section, when incorrect information is
received through the URL, the software will simply
default to the information that is received when a
query based on the IP address is received.

6. Related Research

Many tools which perform similar functions can
be found throughout the web, though none provide

both the ease of use and reporting capabilities
provided by the SPS tool. Bilbo [6], an automated
nmap-scanner and reporter tool, allows for the
scanning of multiple hosts and comparing the results
to a database of previously stored results but seems to
be more of a tool that a SA would use in monitoring
various systems given that it lacks a user interface.
Remote Nmap[7], a tool written in Python to allow
for the remote control of scans using nmap, lacks a
robust operational interface that requires little
interaction on the side of the user and also lacks the
comparison ability needed to allow the user or SA to
quickly verify results.

After the completion of the tool, a Perl module
named Nmap::Parser [SI was found on the web. This
module could have been used inside the SPS to parse
the output from nmap. The actual code in the tool
that parsed nmap output was at most twenty lines and
thus would not have reduced the size of the program
nor increased its performance.

7. Conclusion

Though the SPS tool can become an important
asset in the securing of computer systems, it is by no
means a complete soIution to computer security. It
simply provides some diagnostic information to aid
the user, SA, and security professional in identifying
potential security risks on computer systems and the
capability to secure further their computing
resources, much ldce the diagnostic readout that car
computers aid the mechanics job of repairing a car.
The true cure to the problem of computer security
lies in a combination of audited software and
education; education of the administrators of the
computers and the users ofthese systems.

The association of providing three-level severity
rating for open ports and a list of services that may
use those ports, including Trojan programs that may
be commonly associated with an open port will help
in securing systems and finding potentially unsafe
services and vulnerabilities not otherwise identified
in other types of vulnerability scans. Likewise,
providing a secure interface to the SPS system
prevents it from being mis-used either inadvertently
or purposely.

All too often the real vulnerability in any system
lies in the human aspect of the security chain. This
tool, however, does provide a significant advantage
to those wishing to protect their research and assets
from compromise.

8. Acknowledgements

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

9. References

El] Samba - opening windows to a wider world,
avaiIable at http:l/wuw.samba.org

[2] Nrnap ~ Free Security Scanner For Network
Exploration & Security Audits, available at
http://www.insecure.orghmap/

[3] Rain Forest Puppy, “Per1 CGI Problems”, Phrack
Magazine, Vol. 9, Issue 55, September 9, 1999,
http:l/www. pbxack.org

[4] Stein, Lincoln D. & Stewart, John N., “The
World Wide Web Security FAQ”, Version 3. I .2,

http:l/www.w3 .org/Security/Faq/www-securl~-
faq. htrnl

February 4, 2002,

[SI Internet Security Systems - Internet Scanner,
http://www .iss netlproducts-servicedent
erprisegro tectiodvulnerability - asses sm
enthcannerinternet .php

[6] Welkom to Bilbo, the automated scanner,
h ttp ://do omenburg. homelinux .ne t/s cr ip ts
/bilbo/index.html

[7] Remote nmap, http://mmap.sourceforge.neti
[8] search.cpan.org: Nmap::Parser - parse nmap scan

data with perl,
http ://search. cpm. org/%7Eapersaud/Nm
ap-Parser/Parser.pm

