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AAS 03-569 

APPLICATION OF LOCAL LYAPUNOV EXPONENTS TO 

PROBLEM 
MANEUVER DESIGN AND NAVIGATION IN THE THREE-BODY 

Rodney L. Anderson: Martin W. Lo] George H. Born* 

Dynamical systems theory has recently been employed to design trajecto- 
ries within the three-body problem for several missions. This research has 
applied one stability technique, the calculation of local Lyapunov expo- 
nents, to such trajectories. Local Lyapunov exponents give an indication 
of the effects that perturbations or maneuvers will have on trajectories 
over a specified time. A numerical comparison of local Lyapunov ex- 
ponents was first made with the distance random perturbations traveled 
from a nominal trajectory, and the local Lyapunov exponents were found 
to correspond well with the perturbations that caused the greatest devia- 
tion from the nominal. This would allow them to be used as an indicator 
of the points where it would be important to reduce navigation uncer- 
tainties. The AV required to return to a nominal trajectory from a random 
perturbation was also used in the comparison, and it was found that a rela- 
tionship existed between the local Lyapunov exponents and the maximum 
AV required to return to the nominal trajectory from the random pertur- 
bation. This information has possible applications to maneuver design on 
unstabIe orbits. 

INTRODUCTION 

New methods have recently been developed using dynamical systems theory in an 
effort to aid in the design of trajectories within the three-body problem. These techniques 
have been applied to trajectory design for several different missions. These missions in- 
clude the Genesis mission, which has successfully traveled along the initial portion of its 
trajectory.'. Several earlier missions utiIized libration-point orbits beginning with ISEE-3 
in 197S.3 As quasi-periodic orbits are used for an increasing number of missions, it is desir- 
able to develop techniques that can aid in navigation and enable maneuver design on these 
types of orbits. 

Stationkeeping for quasi-periodic orbits in the three-body problem has previously 
been studied using several different techniques. Stationkeeping for 'ISEE-3 consisted of 
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several large maneuvers on the order of 10 m/s spaced at greater than two-week  interval^.^,^ 
Howell and Pernicka developed an algorithm to keep a spacecraft close to a nominal Lis- 
sajous orbit and to estimate the AV required to remain dose to that desired orbit.5 Their 
algorithm resulted in AVs on the order of 0.1 i d s  with time intervals of one to two months; 
note that their study was performed in the Sun-EartWMoon system, while the current paper 
uses the Earth-Moon system. In their research, the selection of epochs for these maneuvers 
was mentioned as an area for further study. Scheeres and Renault examined stationkeeping 
maneuvers and looked at the optimal time interval between maneuvers.6 Using a different 
approach, Sim6 et al. applied Floquet theory to quasi-periodic libration orbits in order to 
search for a more dynamical approach to maneuver d e ~ i g n . ~  The use of Floquet theory lim- 
its the application of this technique to periodic and quasi-periodic orbits in the three-body 
problem. G h e z ,  Howell, Masdemont, and Sim6 performed a comparison of the Floquet 
approach with the method developed by Howell and Pernicka in the Earth-Moon system.8 
The AVs in G6rnez et al.'s approach were on the order of several c d s  with time intervals 
of one to several days. In another area of research, the sensitivity of trajectories has been 
analyzed for the Genesis trajectory by Bell, Lo, and Wilson.' 

A possible method for examining the effectiveness of maneuvers on a trajectory and 
the influence of perturbations would be to apply stability techniques, such as the use of lo- 
cal Lyapunov exponents, to the three-body problem. Local Lyapunov exponents are based 
on the concepts introduced by Lyapunov" in 1892. Later, Oseledec'* introduced a theo- 
rem that was used by Abarbanel et aI!* to define and calculate local Lyapunov exponents 
in several different types of systems. See Froeschle et al. for applications to dynamical as- 
tronomy and  reference^.'^ In the current study these methods have been implemented and 
applied to trajectories in the three-body problem. In the following a description of how 
local Lyapunov exponents vary is given first. The calculated local Lyapunov exponents 
are then compared to the effects of random perturbations to a trajectory. Finally, possible 
applications to maneuver design are investigated by determining how the local Lyapunov 
exponents relate to the AVs required to return to a nominal trajectory from randomly per- 
turbed states. Such techniques may contribute to the automation of the navigation and 
maneuver design process on unstable orbits in the future. 

METHOD 

Local Lyapunov Exponents 

Local Lyapunov exponents are used to determine the behavior of nearby trajectories 
over a finite time. This is equivalent to quantifying the effect of a perturbation to a nominal 
trajectory at a selected location; this would give an indication of where it would be most im- 
portant to reduce uncertainties in a spacecraft's state. The information obtained from local 
Lyapunov exponents can also be used to show how the AV required to return to a nominal 
trajectory for a given perturbation varies along the trajectory. The primary area of interest 
in this study was in the maximum effect of perturbations and the maximum maneuver AV 
required to return to the nominal trajectory, so the calculations were limited to finding the 
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maximum local Lyapunov exponent. This produces an easily computed value that can be 
used as a metric to give a qualitative indication of how stability varies over a trajectory. 
These results reveal areas of interest along a trajectory where additional quantities neces- 
sary for taking advantage of this information could be calculated, but these quantities have 
not yet been included in this analysis. These techniques are applicable to quasi-periodic 
orbits, which is the focus of the current study, as well as other trajectories in the three- 
body problem. They can also be extended to include trajectories in the n-body problem and 
continuous thrust trajectories. A discussion of Lyapunov exponents will be given next as 
an introduction to local Lyapunov exponents. The equation for computing local Lyapunov 
exponents can then be obtained in a straightforward manner from the Lyapunov exponent 
equation. 

Lyapunov exponents are used to measure the convergence or divergence of nearby tra- 
jectories in a dynamical system.14 They characterize the dynamical system as a whole and 
do not depend on any specific orbit. Lyapunov exponents also reveal how infinitesimal per- 
turbations will behave over long time periods rather than short ones. Generally, Lyapunov 
exponents measure how random a system is or its stochasticity. A positive value for the 
Lyapunov exponent usually indicates that nearby trajectories will diverge and that the flow 
is chaotic. Here, the flow of the differential equations is used to refer to the global set of 
trajectories in a system. The discussion of Lyapunov exponents below follows Oseledec'l 
and Abarbanel et a1.12 

Lyapunov exponents deal with the difference b z  between a solution of the flow and a 
nearby solution. They give insight into the growth in this distance over time for flows. Let 

represent the equations of motion. Then the linearized equations of motion (variational 
equations) are given byI5 

h ( t )  = a@, t,)bz(t,) 

where @(t, to) is the state transition matrix. Lyapunov exponents are similar to character- 
istic numbers which can be defined for a scalar valued function pt as 

1 

Here, there are characteristic numbers for both t t t o o  and t --+ -00, while I I denotes 
the Euclidean norm. In his definition of the Lyapunov exponent, Oseledec defines a nom 
in Euclidean space Rd for some matrix a (a linear operator) as 

ljall = maximum eigenvalue of 67. 
This is equivalent to the operator norm 

(4) 
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where sup is the supremum or least upper bound and a-aT forms a symmetric matrix.16 The 
operator norm gives the maximum amount by which the operator a stretches u. Oseledec 
then proceeds to show that the Lyapunov exponents do not depend on the norm that is used, 
or that they are affine invariants. Using this definition, the Lyapunov exponent €or a flow 
may be defined as 

The state transition matrix acts like the linear operator a on some infinitesimal initial per- 
turbation 6x(to) to give the growth of the perturbation at a later time. Thus, the equation 
for calculating Lyapunov exponents may be written in terms of @(t, t o > .  

1 
A = lim - In I I @ ( t , C o ) l l  

t-to-tm t - t o  

Now, when the flow is integrated over n time steps Eq. (7) becomes 

1 
A = lim -In I[@(nAt + t o ,  t 0 ) l l  . 

nAt-im n& 

(7) 

If instead of taking the limit, the computation is stopped after n time steps, the equa- 
tion for calculating the local Lyapunov exponents (A) is obtained: 

1 
nAt 

X = - In II@((nAt + to, to)ll 

or 

(9) 

max. eigenvalue of J @ ( n ~ t  + t o ,  t o ) ~ ( n ~ t  + t o ,  t o ) )  . (10) nAt 

Local Lyapunov exponents are used to examine the flow over a finite time, so removing the 
limit in the Lyapunov exponent calculation to obtain them makes sense. They are calcu- 
lated by integrating the state transition matrix on a specific trajectory over a chosen number 
of time steps. This allows the desired variation in stability over the system to be examined 
rather than just producing the one resuIt describing the whole system that is given by the 
usual Lyapunov exponents. The resulting local Lyapunov exponents possess the same char- 
acteristics of Lyapunov exponents in that larger values indicate that nearby trajectories will 
diverge more quickly. The use of the operator norm selects for the maximum growth of the 
perturbation, which is the desired output for this study. Abarbanel et al. argue for the use 
of this and it possesses the additional benefit that it eliminates the requirement for 
calculating the eigenvectors. It will also be numerically well-behaved. A similar concept to 
local Lyapunov exponents called “finite time Lyapunov characteristic exponents” does not 
use the operator norm. Scheeres et al. make use of these finite time Lyapunov characteris- 
tic exponents to indicate how the frequency of measurements might affect the Uncertainties 
along an unstable orbit.17 
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Dynamic Models 

The calculation of Iocal Lyapunov exponents were initially applied in the circular 
restricted three-body problem (CR3BP). In this model, two bodies (the primaries, PI and 
P.> are assumed to travel about their center of mass in circular orbits. The problem is to 
determine the motion of a third infinitesimal mass (P3) that has a negligible effect on the 
motion of the two primaries. A diagram of the problem is shown in Figure 1 with the 
primary possessing the larger mass (PI)  shown on the left. An inertial coordinate system 

Figure 1 Diagram of the Circular Restricted Three-Body Problem 

([,q,C) and a rotating coordinate system ( z ,  y, z )  are placed with their centers at the center 
of mass of the two primaries. The rotating coordinate system rotates with the mean motion 
of the primaries so that its x-axis always points from PI to P.. The various quantities used 
in the CR3BP are typically nondimensionalized so that the mass of the smaller primary is 
defined to be p with the mass of the larger primary given by 1 - p. The distance from the 
origin to PI is then ,LL, and the distance from the origin to Pz is 1 - p. The nondimensional 
time corresponds to the angular distance traveled by the primaries. The equations of motion 
for the infinitesimal mass in the rotating coordinate system may then be written as 

Here, T~ is the the distance between the infinitesimal mass and PI, and ~2 is the distance 
between the infinitesimal mass and P2. 

The equilibrium points in this problem are typically referred to as Lagrange points, 
and it is at these points that periodic orbits have been found to exist. The collinear Lagrange 
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points (Ll, L2, and L3) are labeled in Figure 1. In this paper, the Lagrange points in the 
Earth-Moon system are referred to as Lunar Lagrange points, so L l  is called Lunar L1 or 
LL1. In the three-body problem, these orbits become quasi-periodic or Lissajous orbits. 
The trajectories used in this study consist of these types of orbits. 

The calculation of local Lyapunov exponents was also implemented in PL's libration 
point mission design tool (LTool) in order to examine trajectories in the three-body prob- 
lem. This tool has the ability to include the DE-405 ephemerides for the selected bodies as 
well as algorithms to aid in computing quasi-periodic orbits. The initial conditions for the 
Lissajous orbit were obtained using the Richardson-Cary expansion algorithm.18 The ini- 
tial conditions for the Lyapunov orbits were computed using AUT02000 scripts provided 
by Paffenroth." LTool's differential corrector then used these initial conditions to obtain a 
continuous orbit while incorporating the ephemerides. 

RESULTS 

Calculation of Local Lyapunov Exponents on Selected Trajectories 

In order to obtain a better understanding of the behavior of local Lyapunov exponents, 
they were computed along various periodic and quasi-periodic orbits using the two differ- 
ent dynamic models. The local Lyapunov exponents were typically calculated at 0.1 day 
intervals for these orbits in the Earth-Moon system. At each of these points a selected time 
interval, such as one day, was used in the local Lyapunov exponent calculation. The dif- 
ferent time intervals are illustrated in Figure 2. In this figure, the dots are placed on the 
trajectory at the time interval used between the calculation of the local Lyapunov expo- 
nents. The larger interval represents the time period used in the local Lyapunov exponent 
calculation. 

As a first step, trajectories in the CR3BP were examined. The results from LTool for 
a Lyapunov orbit around the LL1 libration point using this model are shown in Figure 3. In 
this plot, the trajectory is shown in the rotating coordinate frame, and the magnitude of the 
local Lyapunov exponents, which were calculated over one-day time periods, is represented 
by the shade. The local Lyapunov exponents are also plotted as arrows perpendicular to the 
trajectory with the scale indicated on the plot. So the magnitude of the local Lyapunov 
exponents in this plot indicates the effect a perturbation to a trajectory would be expected 
to have over one day. The direction of the arrows have no physical meaning and are for 
ease of visualization only. A plot of the local Lyapunov exponents versus time is also 
given in Figure 4. It can be seen that the largest peak in the local Lyapunov exponents 
with a magnitude of nearly three days-' (A is in units of l/days) occurs nearest the Moon. 
The local Lyapunov exponents rise as the trajectory approaches the Moon. If smaller time 
intervals are used for the local Lyapunov exponent calculation, the peak will be centered 
closer to the Moon. A similar trend occurs on the side of the orbit closest to the Earth. This 
makes sense because these locations correspond to the points on the orbits that would be 
most perturbed by the gravitating bodies. 
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Interval Used in 1 st Local Lyapunov 
Exponent Calculation 

! ! 

2"' Calculation 

I I 

Interval Used in 2"d Local Lyapunov 
Exponent Calcdation 

Figure 2 Illustration of the Time Intervals Used in the Local Lyapunov Exp. Calculation 
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Figure 3 Local Lyapunov Exponents Calculated Over One-Day Intervals on a Planar Lya- 
punov Orbit in the Earth-Moon System using the CR3BP Model (Arrows indicate the magni- 
tude of the local Lyapunov exponents with the scale given in the upper left corner.) 

Next, the local Lyapunov exponents were calculated over one-day intervals for a Lis- 
sajous orbit in the Earth-Moon system as shown in Figure 5. A pIot versus time over 
approximately one period is also given in Figure 6 for this Lissajous orbit. The highest 
peak corresponds to the increased local Lyapunov exponents dosest to the Moon, and the 
second highest peak corresponds to the local Lyapunov exponents on the side of the orbit 
closest to the Earth. The local Lyapunov exponents in both of these plots generally increase 
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Figure 5 Locai Lyapunov Exponents Calculated Over One-Day Intervals on a Lissajous Orbit 
in the Earth-Moon System using Ephemerides 

on the portions of the trajectory that are closest to the Earth and Moon. In these cases, the 
most obvious increase is on the portion of the trajectory near the Moon. Similar trends 
were found in other quasi-periodic orbits around LL1. It has been observed that maneu- 
vers on halo and Lissajous orbits appear to be most effective when they take place near the 
line connecting the primaries.'' The increase in the locaI Lyapunov exponents near these 
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areas does indeed indicate that perturbations or AVs would have a greater effect and may 
provide an explanation for why this occurs. Another area of exploration relates to how 

';i 1.6 I I I I I I 

P 
2 

E 1.4- 
r - 

0 2 4 6 8 10 12 14 
Time (days) 

Figure 6 Time History of Local Lyapunov Exponents for the Lissajous Orbit in Figure 5 

the local Lyapunov exponents vary if the time interval used in the calculation is increased. 
Figure 7 shows such a case for a time interval of 20 days. Generally as the time interval is 
increased, the variation between the peaks and valleys becomes smaller, and the local Lya- 
punov exponent begins to approach a single value. By comparing the scales on the plots in 
Figures 6 and 7, it can be seen that the curve using the 20 day interval is relatively flat. It is 
interesting to note that the larger peak in this plot occurs on the side of the orbit closest to 
the Earth. 

Time (days) 

Figure 7 Time History of Local Lyapmov Exponents Calculated Over 20-Day Intervals for 
the Orbit in Figure 5 

Comparison with Perturbations and Navigation Applications 

The magnitude of the local Lyapunov exponents should indicate how perturbations 
will affect a trajectory, so a comparison of the local Lyapunov exponents and the effect of 
perturbations in phase space was performed. In each case, a perturbation in positjon and 
velocity was introduced at the same point that a local Lyapunov exponent was computed. 
The nominal and perturbed trajectories were then integrated forward for a time interval 
equal to that used in the calculation of the local Lyapunov exponent. The difference in 
position between the two integrated trajectories at the end of the time period was computed 
and compared with the local Lyapunov exponent. This concept is illustrated in Figure 8 
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Figure 8 Illustration of Random Perturbation Calculation 

where a single perturbation in position and velocity (ARo and AVO) is shown at the first 
time (to) along with the final difference in position (ARf). The time interval between the 
local Lyapunov exponent calculations (t, - t,-l) was typically 0.1 days, while the time 
interval used in the local Lyapunov exponent calculation (t, - t o )  varied from 0.25 to three 
days. In the actual calculation, multipIe random perturbations were introduced at each time. 

For this study, a nearly planar Lyapunov orbit computed with the ephemerides of the 
Earth and Moon was used. The resulting orbit is shown in Figure 9 where the arrows 
once again represent the local Lyapunov exponents, and the results are given over time in 
Figure 10. For each point on the orbit where a local Lyapunov exponent was calculated, 

+ 
Moon 

I I I I I I 

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000 
x (W 

Figure 9 Local Lyapunov Exponents Plotted on a Nearly Planar Lyapunov Orbit Obtained 
with Ephemerides using a One-Day Interval 
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Figure 10 Local Lyapunov Exponents Plotted on the Lyapunov Orbit using a One-Day In- 
terval (top), Final Distance From the Nominal as a Result of Random Perturbations with 
Magnitudes of 1 km and 1 r n d s  (bottom) 

20 different perturbations were introduced. The final distances from the nominal trajectory 
were then computed and plotted in Figure 10 along with a curve fit of the final maximum 
distance from the nominal. The peaks and valleys in the maximum AV varied somewhat 
depending on the number of random points used and the curve fit. Generally, though, 
the peaks and valleys of the two curves tended to occur at approximately the same times. 
Overall, it was found that the trend in the local Lyapunov exponents corresponded very 
well with the final maximum distance between the nominal and the perturbed trajectories. 
This correspondence with the maximum distance rather than some other quantity is to be 
expected since the local Lyapunov exponent used here selects for the maximum growth of 
the perturbation. It may also be noted that the minimum distance is obtained near the peak 
of the local Lyapunov exponent. It appears that the direction of the random perturbation in 
phase space does have an effect then, but a large local Lyapunov exponent indicates that an 
unknown perturbation could have a greater impact at this point. If a trajectory must remain 
within some distance of the nominal, it would be desirabIe to ensure that uncertainties were 
smaller at the maximum local Lyapunov exponent so that any necessary maneuvers could 
be performed. The local stability characteristics are sometimes examined17 by using the 
eigenvalues of the state transition matrix rather than utiIizing the operator norm as given 
by Oseledec. A comparison between these two techniques was made, and it was found 
that for the orbits used in this study the trends for the two techniques were generally the 
same. So in order to further examine the effect of direction on a perturbation and how 
this relates to local Lyapunov exponents, a case was run where a perturbation was made at 
each local Lyapunov exponent calculation in the direction of the eigenvector corresponding 
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to the maximum eigenvalue of the state transition matrix. The final distance between the 
perturbed and nominal trajectory for this case corresponded very well to the trends found in 
the local Lyapunov exponents as can be seen by comparing the curves in Figure 11. Overall, 
it appears that the local Lyapunov exponents give a good indication of the maximum effect 
that a perturbation may have, but the direction of the perturbations plays a significant role. 
This is not surprising since it is known that the dynamics around these unstable orbits are 
hyperbolic in nature. 
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Figure 11 Local Lyapunov Exponents (top), Distance Traveled After One-Day for a Fertur- 
bation with an Initial Position Magnitude of 1 km in the Unstable Direction (bottom) 

As previously mentioned, knowledge of the effect of perturbations given by local 
Lyapunov exponents have several straightforward applications to navigation uncertainties. 
Since equivalent perturbations can have varying effects at different points on a trajectory, 
it would be desirable to reduce uncertainties at the points on the trajectory where these 
effects are largest. This could aid in scheduling observations in order to achieve the desired 
uncertainties. Devising a method for determining where observations should take place 
would be an area for further research. 

Maneuver Design 

The anaIysis of perturbations to a trajectory allowed the determination of locations 
where a perturbation or AV would cause a spacecraft to travel away from its nominal 
trajectory. The question then arises as to whether local Lyapunov exponents can be used as 
an indicator of the AV that would be required to return to the nominal trajectory from some 
perturbed trajectory. This would relate directly to maneuver design and stationkeeping 
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for unstable orbits. As a method of comparing the local Lyapunov exponents and AVs, 
the total AV required to return to the nominal trajectory and match velocities over the 
time interval used in the local Lyapunov exponent calculation was computed. As in the 
previous comparison, 20 random perturbations were introduced each time a local Lyapunov 
exponent was calculated. The targeting portion of LTool's differential correcto? was used 
to determine the AV required to return to the nominal trajectory within the desired time 
interval. The total AV included both the AV required to target the nominal trajectory as 
well as the AV required to match velocities at the end of the time period. 

The simple case of a planar Lyapunov orbit in the CR3BP was initially chosen for this 
comparison. A corresponding orbit integrated using the ephemerides of the Earth and Moon 
is plotted in Figure 9. Initially, small perturbations with magnitudes of 1 km and 0.1 d s  
were used since it is expected that smaller perturbations would result in the best correlation 
with the local Lyapunov exponents. The time history over approximately one period of the 
calculated local Lyapunov exponents and AVs are given in Figure 12 for the case where 
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Figure 12 Local Lyapunov Exponents (top) and AVs (bottom) Calculated Over One-Day 
Intervals on a Lyapunov Orbit in the CR3BP with Perturbations of 1 km and 0.1 m d s  

the local Lyapunov exponents and the hVs were computed using one-day intervals. Both 
computations were performed at 0.1 day intervals for all the remaining cases. It can be seen 
from Figure 12 that the local Lyapunov exponents varied from approximately 0.97 to 1.57 
days-' with two peaks in their values. The larger peak corresponded as usual to the side of 
the orbit closest to the Moon. The AVs for each of the random perturbations are also plotted 
with the maximum AV having a value of 2.53 c d s .  These values are comparable to the 
magnitude of the stationkeeping AVs used in other studies.8 The local Lyapunov exponents 
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in this case appeared to have the best correlation with the maximum computed AVs at each 
point. The outliers were removed from these values, and a curve fit of the main AVs was 
computed as given in the figure. Although the shape of the curves appears to be similar, 
the peaks and valleys occur at different times. By comparing the times of the largest peak, 
it can be seen that the maximum AV peak occurs approximately 0.9 days after the peak in 
the local Lyapunov exponents. The second highest maximum hV peak occurs nearly one 
day after the local Lyapunov exponents peak, and the deepest valley occurs approximately 
1.1 days after the local Lyapunov exponents. From this comparison, it appears that the 
maximum AV curve trails the local Lyapunov exponent curve by approximately one day, 
or the length of time used in the local Lyapunov exponent calculation. It may be that the 
maximum AV and the local Lyapunov exponent should be compared at the end of the local 
Lyapunov exponent calculation when the spacecraft is nearest the nominal trajectory, and 
the final AV is performed. 

In order to test this hypothesis and examine the effect on the comparison of varying the 
time interval used in the calculation, several cases were used with difkrent time intervals. 
For the first of these cases, shown in Figure 13, the time interval was reduced to 0.25 

I 
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Figure 13 Local Lyapunov Exponents (top) and AVs (bottom) CaIculated Over 0.25-Day 
Intervals on a Lyapunov Orbit in the CR3BP with Perturbations of 1 km and 0.1 m d s  

days. Here, it is more difficult to locate the peaks and valleys in the data to sufficient 
accuracy, but the offsets appear to be consistent with the new time interval of 0.25 days. 
It may also be noticed that the local Lyapunov exponents and the AVs are both larger 
for this case. If the local Lyapunov exponent equation is examined, it can be seen that 
the local Layapunov exponent is inversely proportional to the time interval, so the smaller 
time interval would tend to increase the local Lyapunov exponent. The Iarger AVs can be 
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expected because the requirements are now more stringent. The spacecraft has less time 
to return to the nomina1 trajectory even though the magnitude of the perturbations has not 
changed. Next, a case using a time interval of two days was used, and the results are plotted 
in Figure 14. It may be noted that the local Lyapunov exponents are not computed to the end 
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Figure 14 Local Lyapunov Exponents (top) and AVs (bottom) Calculated Over Two-Day 
Intervals on a Lyapunov Orbit in the CR3BP with Perturbations of 1 kEla and 0.1 mm/s 

of the period because two days worth of data were needed to compute the local Lyapunov 
exponents. As expected, the magnitude of the local Lyapunov exponents and the maximum 
AVs has decreased even further in this plot. Comparing the peaks and valleys of the plot 
reveals that the maximum AVs are approximately 1.6-1.8 days behind the local Lyapunov 
exponents depending on the curve fit that is used. If the time interval is increased even 
further to three days, as shown in Figure 15, the peaks in the maximum AV plot lag those 
on the loca1 Lyapunov exponent plot by approximately 0.75 days. Therefore, it appears that 
some relationship may exist between the offset in the maximum AV and local Lyapunov 
exponent plot for time intervals on the order of one day, but it is not as clearly defined for 
time intervals of two days. The relationship begins to fall apart for larger time intervals. 
However, in each case the of€set between the two curves appears to be nearly constant. 
Once this offfset is known, the local Lyapunov exponents could then be easily used as an 
indicator of required maximum AV. 

Several other questions remain in relation to the applicability of this technique. An 
additional test was to determine if the previously examined relationships exist for larger 
perturbations. The case for one-day intervals using perturbations with magnitudes of 10 km 
and 1 mm/s is shown in Figure 16. This results in a maximum AV of 25.2 c d s ,  and the 
curve had nearly the same shape as seen in the plot using smaller perturbations. Once again, 
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Figure 15 Local Lyapunov Exponents (top) and AVs (bottom) Calculated Over Three-Day 
Intervals on a Lyapunov Orbit in the CR3BP with Perturbations of 1 km and 0.1 m d s  
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Figure 16 Local Lyapunov Exponents (top) and AVs (bottom) Calculated Over One-Day 
Intervals on ar Lyapunov Orbit in the CR3BP with Perturbations of 10 km and 1.0 m d s  

the offset between the two curves was approximately one day. An additional test was to de- 
termine how the AVs behaved for a nonplanar orbit integrated with the full ephemerides of 
the Earth and Moon. The results for the Lissajous orbit in Figure 5 are shown in Figure 17. 
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Figure 17 Local Lyapunov Exponents (top) and AVs (bottom) Calculated Over One-Day 
Intervals on a Lissajous Orbit Using Ephemerides with Perturbations of 1 km and 0.1 m d s  
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Figure 18 Local Lyapunov Exponents (top) and AVs (bottom) Calculated Over 0.25-Day In- 
tervals on a Lissajous Orbit Using Ephemerides in the Unstable Direction with Perturbations 
of 1 km 

Here, the relationship between the two curves generally remains the same. The offset in 
the peaks of the two curves can be estimated as approximately one day. The second valley 
at nearly 10 days in the maximum AV curve is not as noticeable as in the local Lyapunov 

17 



exponent curve, but it still seems to exist. Finally, a comparison with the AVs required for 
a perturbation in the unstable direction of the state transition matrix was performed. The 
results for the case with an interval of 0.25 days are shown in Figure LS. It appears that the 
same trends found in the maximum AV using the random perturbations also exist in this 
curve. 

CONCLWDING REMARKS 

The behavior of local Lyapunov exponents have been partially numerically character- 
ized on periodic and quasi-periodic orbits in the CR3BP and using models which include 
the ephemerides of the Earth and Moon. Numerical comparisons with random perturba- 
tions and possible stationkeeping maneuvers have been performed. It was found that local 
Lyapunov exponents generally increase on the portion of the selected orbits that came clos- 
est to the Earth and Moon with the largest peak occurring on the side of the orbit closest 
to the Moon. This corresponds to locations in the orbit most perturbed by the gravitating 
bodies. This information agrees well with observations that maneuvers are generally more 
effective along the line connecting the two primaries. A comparison of the local Lyapunov 
exponents with the effect of random perturbations on the separation between the perturbed 
and the nominal trajectory revealed that the local Lyapunov exponents best matched the 
trend in the maximum separation. With this information, the local Lyapunov exponents 
can be used to indcate where it would be most important to reduce the magnitude of nav- 
igation uncertainties. The local Lyapunov exponents also matched perturbations made in 
the unstable direction of the state transition matrix, which along with the previous compar- 
isons, shows that the direction of the perturbation plays a significant role in its behavior. 

The comparison of local Lyapunov exponents and AVs required to return to a trajec- 
tory from a random perturbation showed that the trends in the local Lyapunov exponents 
generally matched those of the maximum required AV. However, an offset in time exists 
that corresponds to the time interval used in the local Lyapunov exponent calculation for 
time intervals less than two days in length for the Earth-Moon system, and some constant 
offset for larger time intervals. With knowledge of this offset, the local Lyapunov expo- 
nents can be used as a method for selecting the desired locations to perform maneuvers. 
This correlation was also found to exist for large AVs of approximately 20 cm/s as well 
as for the original AVs of approximately 2 c d s .  The cornparison also remained valid for 
Lissajous orbits in the three-body problem and Lyapunov orbits in the CR3BP. 

Future work will include art examination of techniques for incorporating the direction 
of the perturbation into the process. The relationship with navigation uncertainties will 
also be further examined. These methods can be extended to additional trajectories in the 
three-body problem as well as continuous thrust trajectories like those used for the Jupiter 
Icy Moons Orbiter (JIMO). Eventually it would be desirable to automate the navigation 
and maneuver design process along unstable orbits using these techniques. 
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