
JPL’s Bundle Protocol 
Implementation:

Interplanetary Overlay Network
(ION)



Constraints

• Interplanetary internet is a classic DTN scenario:
– Long signal propagation times, intermittent links.

• Links are very expensive, always oversubscribed.
• Immediate delivery of partial data is often OK.
• Limited processing resources on spacecraft: slow 

(radiation-hardened) processors, but relatively ample 
memory.  Solid-state storage.

• For inclusion in flight software:
– Processing efficiency is important.
– Must port to VxWorks real-time O/S.
– No malloc/free; must not crash other flight software.



Applications

• Brief messages (typically less than 64 KB).
– One bundle per message.
– CCSDS Asynchronous Message Service (AMS) is being 

considered.

• Files, often structured in records.
– Need to be able to deliver individual records as they arrive.  So 

most likely one bundle per record.
– CCSDS File Delivery Protocol (CFDP) is the standard.

• Streaming voice and video for Constellation.
• In general, we expect relatively small bundles.



Outline

• Supporting infrastructure: sdr, psm, zco, platform.
– Mostly inherited from Deep Impact flight software.

• Node architecture.
• Processing flow.
• Compressed Bundle Header Encoding (CBHE).
• The “ipn” scheme: EID structure, forwarding.
• Features implemented and not implemented.
• Ports to date.
• Performance.
• Distribution to date.



Supporting infrastructure

• psm (Personal Space Management): high-speed dynamic 
allocation of memory within a fixed pre-allocated block.
– Built-in memory trace functions for debugging.

• sdr (Spacecraft Data Recorder): robust embedded object 
persistence system; database for non-volatile state.
– Performance tunable between maximum safety, maximum speed.
– Again, built-in trace functions for debugging usage.

• zco (Zero-Copy Objects): reduce protocol layer overhead.
• platform O/S abstraction layer for easy porting from Linux 

to VxWorks, Solaris, Interix.
• Written in C for small footprint, high speed.



Operating System
Platform
PSM

SmListSDR
ZCO

ION

ION Interplanetary Overlay Network libraries and daemons
ZCO Zero-copy objects capability: minimize data copying up and down the stack
SDR Spacecraft Data Recorder = persistent object database in shared 

memory, using PSM and SMList
SmList linked lists in shared memory using PSM
PSM Personal Space Management = memory management within a 

pre-allocated memory partition
Platform access to O.S. such as shared memory, system time, IPC mechanisms
Operating System thread spawn/destroy, file system, time, inter-process communications

Implementation Layers



Node architecture

• ION is database-centric rather that daemon-centric.
– A node is a database.

• Bundle protocol API is local functions in shared libraries, 
rather than inter-process communication channels.

• Multiple independent processes – daemons and 
applications, as peers – share direct access to the node state 
(database and shared memory) concurrently.



Node architecture (cont’d)

• Separate process for each scheme-specific forwarder.
– Forwarder is tailored to the characteristics (endpoint naming, 

topology) of the environment implied by the scheme name.

• Separate process for each convergence-layer input and 
output.
– No assumption of duplex connectivity.

• Schemes (forwarders) and convergence-layer adapter 
points can be added while the node is running.
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CLI

• Acquire bundle from sending CLO, using the underlying 
CL protocol.

• Dispatch the bundle.



dispatch

• Local delivery: if an endpoint in the database (that is, an 
endpoint in which the node is registered) matches the 
destination endpoint ID, append bundle to that endpoint’s 
delivery queue.

• Forwarding: append bundle to forwarding queue based on 
scheme name of bundle’s destination endpoint ID, with 
“proximate destination EID” initially set to the bundle’s 
destination EID.
– Forwarder later appends it to outduct’s transmission queue; see ipn

forwarder below.



CLO

• Pop bundle from outduct’s transmission queue.
• As necessary, map the associated destination duct name to 

a destination SAP in the namespace for the duct’s CL 
protocol.  (Otherwise use the default destination SAP 
specified for the duct.)

• Invoke that protocol to transmit the bundle to the selected 
destination SAP.



CBHE

• For a CBHE-conformant scheme, every endpoint ID is
scheme_name:element_nbr.service_nbr

• 65,535 schemes supported.
• Up to 16,777,215 elements in each scheme.

– Element ~= node.
– Number of nodes addressable by scheme/element is 256 times the 

size of IPv4 address space.

• Up to 65,535 services in each scheme.
– Service ~= “demux token” or IP protocol number.



CBHE (cont’d)

• For bundles traveling exclusively among nodes whose IDs 
share the same CBHE-conformant scheme name, primary 
bundle header length is fixed at 34 bytes.
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Dictionary is not needed, so it is omitted.  All administrative bundles are service number 0.



The “ipn” scheme

• CBHE-conformant, so every EID is:
ipn:element_nbr.service_nbr

– “Elements” notionally map to Constellation elements, such as the 
Crew Exploration Vehicle.

– Services:
• 1 currently used for test
• 2 could be CFDP traffic
• 3 to N could be traffic for Remote AMS continua.  (Element number 

might also serve as AMS continuum number.)



ipn-specific forwarder

• Use proximate-destination element number as index into 
plans array; use source element number and/or service 
number to select rule in that plan (or use default rule).

• If rule cites another EID:
– If non-ipn scheme, append (with proximate destination EID 

changed) to that scheme’s forwarding queue.
– Else, iterate with new proximate-destination element number.

• Otherwise (rule is outduct reference and, possibly, 
destination induct name):
– Insert bundle into the transmission queue for that outduct, noting 

the associated destination induct name [if any].



Features implemented (and not)

• Conforms to current BP specification (version 4, 
December 2005).

• Implemented: priority, custody transfer, status reports, 
delivery options, for both CBHE and non-CBHE bundles.
– Forwarder for the ipn scheme.
– Convergence-layer adapters for TCP, “SPOF”.  

• Partially implemented: custody transfer (only for CBHE 
bundles so far), reassembly from fragments, flooding.
– Congestion control based on custody transfer.

• Not implemented: fragmentation, application-initiated 
acknowledgements, security, multicast.



Ports to date

• Linux (Red Hat 8+, Fedora Core 3)
– 32-bit Pentium
– 64-bit AMD Athlon 64

• Interix (POSIX environment for Windows)
• VxWorks (but not tested yet)



Performance

• Maximum data rate clocked to date is 300 Mbps.
– Over a Gigabit Ethernet between two dual-core 3GHz Pentium-4 

hosts running Fedora Core 3, each with 800 MHz FSB, 512MB of 
DDR400 RAM, 7200 rpm hard disk.

– sdr tuned to maximum speed and minimum safety.
– No custody transfer.

• At the other extreme: running over a two-hop path on a 
100-Mbps Ethernet with custody transfer requested and sdr
tuned to maximum safety, only 3 to 4 Mbps.



Evaluation copies distributed to date

• ESA (European Space Agency)
• CNES (the French space agency) 
• Johns Hopkins University Applied Physics Laboratory
• NASA Constellation project
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