
JPL’s Bundle Protocol
Implementation:

Interplanetary Overlay Network
(ION)

Constraints

• Interplanetary internet is a classic DTN scenario:
– Long signal propagation times, intermittent links.

• Links are very expensive, always oversubscribed.
• Immediate delivery of partial data is often OK.
• Limited processing resources on spacecraft: slow

(radiation-hardened) processors, but relatively ample
memory. Solid-state storage.

• For inclusion in flight software:
– Processing efficiency is important.
– Must port to VxWorks real-time O/S.
– No malloc/free; must not crash other flight software.

Applications

• Brief messages (typically less than 64 KB).
– One bundle per message.
– CCSDS Asynchronous Message Service (AMS) is being

considered.

• Files, often structured in records.
– Need to be able to deliver individual records as they arrive. So

most likely one bundle per record.
– CCSDS File Delivery Protocol (CFDP) is the standard.

• Streaming voice and video for Constellation.
• In general, we expect relatively small bundles.

Outline

• Supporting infrastructure: sdr, psm, zco, platform.
– Mostly inherited from Deep Impact flight software.

• Node architecture.
• Processing flow.
• Compressed Bundle Header Encoding (CBHE).
• The “ipn” scheme: EID structure, forwarding.
• Features implemented and not implemented.
• Ports to date.
• Performance.
• Distribution to date.

Supporting infrastructure

• psm (Personal Space Management): high-speed dynamic
allocation of memory within a fixed pre-allocated block.
– Built-in memory trace functions for debugging.

• sdr (Spacecraft Data Recorder): robust embedded object
persistence system; database for non-volatile state.
– Performance tunable between maximum safety, maximum speed.
– Again, built-in trace functions for debugging usage.

• zco (Zero-Copy Objects): reduce protocol layer overhead.
• platform O/S abstraction layer for easy porting from Linux

to VxWorks, Solaris, Interix.
• Written in C for small footprint, high speed.

Operating System
Platform
PSM

SmListSDR
ZCO

ION

ION Interplanetary Overlay Network libraries and daemons
ZCO Zero-copy objects capability: minimize data copying up and down the stack
SDR Spacecraft Data Recorder = persistent object database in shared

memory, using PSM and SMList
SmList linked lists in shared memory using PSM
PSM Personal Space Management = memory management within a

pre-allocated memory partition
Platform access to O.S. such as shared memory, system time, IPC mechanisms
Operating System thread spawn/destroy, file system, time, inter-process communications

Implementation Layers

Node architecture

• ION is database-centric rather that daemon-centric.
– A node is a database.

• Bundle protocol API is local functions in shared libraries,
rather than inter-process communication channels.

• Multiple independent processes – daemons and
applications, as peers – share direct access to the node state
(database and shared memory) concurrently.

Node architecture (cont’d)

• Separate process for each scheme-specific forwarder.
– Forwarder is tailored to the characteristics (endpoint naming,

topology) of the environment implied by the scheme name.

• Separate process for each convergence-layer input and
output.
– No assumption of duplex connectivity.

• Schemes (forwarders) and convergence-layer adapter
points can be added while the node is running.

inducts

incomplete
(inbound)
bundles

inbound
bundles

endpoints

all bundles (waiting
for TTL expiration)

schemes

outducts outbound
bundles

DTN database

timeline

convergence
layer input

convergence
layer output

DTN clock

application process

bundles to
forward

forwarder

CL
protocols

Processing Flow
Application

send receive

delivery
queue

forwarding
queue

Forwarder

transmission
queue

CLO

local protocol

CLI

local protocol dispatch

ION database

CLI

• Acquire bundle from sending CLO, using the underlying
CL protocol.

• Dispatch the bundle.

dispatch

• Local delivery: if an endpoint in the database (that is, an
endpoint in which the node is registered) matches the
destination endpoint ID, append bundle to that endpoint’s
delivery queue.

• Forwarding: append bundle to forwarding queue based on
scheme name of bundle’s destination endpoint ID, with
“proximate destination EID” initially set to the bundle’s
destination EID.
– Forwarder later appends it to outduct’s transmission queue; see ipn

forwarder below.

CLO

• Pop bundle from outduct’s transmission queue.
• As necessary, map the associated destination duct name to

a destination SAP in the namespace for the duct’s CL
protocol. (Otherwise use the default destination SAP
specified for the duct.)

• Invoke that protocol to transmit the bundle to the selected
destination SAP.

CBHE

• For a CBHE-conformant scheme, every endpoint ID is
scheme_name:element_nbr.service_nbr

• 65,535 schemes supported.
• Up to 16,777,215 elements in each scheme.

– Element ~= node.
– Number of nodes addressable by scheme/element is 256 times the

size of IPv4 address space.

• Up to 65,535 services in each scheme.
– Service ~= “demux token” or IP protocol number.

CBHE (cont’d)

• For bundles traveling exclusively among nodes whose IDs
share the same CBHE-conformant scheme name, primary
bundle header length is fixed at 34 bytes.

Scheme SSP

Destination offsets

Scheme SSP

Source offsets

Scheme SSP

Report-to offsets

Scheme SSP

Custodian offsets

Common
Scheme
number

Destination
Element number

Source
Element number

Report-to
Element number

Custodian
Element number

Service
Number

for source &
destination

Non-CBHE

CBHE

Dictionary is not needed, so it is omitted. All administrative bundles are service number 0.

The “ipn” scheme

• CBHE-conformant, so every EID is:
ipn:element_nbr.service_nbr

– “Elements” notionally map to Constellation elements, such as the
Crew Exploration Vehicle.

– Services:
• 1 currently used for test
• 2 could be CFDP traffic
• 3 to N could be traffic for Remote AMS continua. (Element number

might also serve as AMS continuum number.)

ipn-specific forwarder

• Use proximate-destination element number as index into
plans array; use source element number and/or service
number to select rule in that plan (or use default rule).

• If rule cites another EID:
– If non-ipn scheme, append (with proximate destination EID

changed) to that scheme’s forwarding queue.
– Else, iterate with new proximate-destination element number.

• Otherwise (rule is outduct reference and, possibly,
destination induct name):
– Insert bundle into the transmission queue for that outduct, noting

the associated destination induct name [if any].

Features implemented (and not)

• Conforms to current BP specification (version 4,
December 2005).

• Implemented: priority, custody transfer, status reports,
delivery options, for both CBHE and non-CBHE bundles.
– Forwarder for the ipn scheme.
– Convergence-layer adapters for TCP, “SPOF”.

• Partially implemented: custody transfer (only for CBHE
bundles so far), reassembly from fragments, flooding.
– Congestion control based on custody transfer.

• Not implemented: fragmentation, application-initiated
acknowledgements, security, multicast.

Ports to date

• Linux (Red Hat 8+, Fedora Core 3)
– 32-bit Pentium
– 64-bit AMD Athlon 64

• Interix (POSIX environment for Windows)
• VxWorks (but not tested yet)

Performance

• Maximum data rate clocked to date is 300 Mbps.
– Over a Gigabit Ethernet between two dual-core 3GHz Pentium-4

hosts running Fedora Core 3, each with 800 MHz FSB, 512MB of
DDR400 RAM, 7200 rpm hard disk.

– sdr tuned to maximum speed and minimum safety.
– No custody transfer.

• At the other extreme: running over a two-hop path on a
100-Mbps Ethernet with custody transfer requested and sdr
tuned to maximum safety, only 3 to 4 Mbps.

Evaluation copies distributed to date

• ESA (European Space Agency)
• CNES (the French space agency)
• Johns Hopkins University Applied Physics Laboratory
• NASA Constellation project

	JPL’s Bundle Protocol Implementation:�Interplanetary Overlay Network�(ION)
	Constraints
	Applications
	Outline
	Supporting infrastructure
	Node architecture
	Node architecture (cont’d)
	Processing Flow
	CLI
	dispatch
	CLO
	CBHE
	CBHE (cont’d)
	The “ipn” scheme
	ipn-specific forwarder
	Features implemented (and not)
	Ports to date
	Performance
	Evaluation copies distributed to date

