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Abstract-This paper’,’ discusses the application of 
evolutionary computing to a dynamic space vehicle power 
subsystem resource and performance simulation in a parallel 
processing environment. Our objective is to demonstrate the 
feasibility, application and advantage of using evolutionary 
computation techniques for the early design search and 
optimization of space systems. With this approach, 
engineers specify several sets of conditional subsystem 
performance criteria to trade off subsystem goals of mass, 
cost, performance and risk. Once specified, the integrated 
evolutionary/simulation software will then automatically 
generate a design option for each criteria, selecting and 
sizing power elements based on the space system’s 
anticipated performance in the simulated environment. 
Initial Activity plans from two actual JPL missions, Mars 
Exploration Rovers (MER) and Deep Impact (DI) are used 
to test the software. Our results have shown human- 
competitive advantages by generating credible design 
concepts much faster than humans are able to and without 
the need for expert initial designs. 
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1. INTRODUCTION 

This work describes the application of evolutionary 
computational techniques to the automatic optimization of 
spacecraft power sub-systems. Over the past three years the 
Evolutionary Computation Group at NASA’s Jet Propulsion 
Laboratory (JPL) has had the objective of demonstrating the 
feasibility, application and advantage of using biologically 
inspired evolutionary computational techniques for the early 
design search and optimization of space systems. In general, 
we have demonstrated that the same computational tools 
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used for computer aided design and for design evaluation 
can also be used for the automated optimization of designs 
[l]. These multi-parameter design simulators are run on 
cluster computers as a parallel population of designs with 
randomly varying input parameters and starting with a 
random initial designs. The results are competed and 
selected down to a smaller sub-set of parents that provide 
the basis (using genetic operators of mutation and gene 
cross-over) for the design parameters of the next generation. 
Given a large enough population, sufficient generations and 

the right conditions for evolution, we have demonstrated the 
feasibility of automatically optimizing simulated designs. 

We applied these evolutionary techniques by incorporating 
the Multi-Mission Power Analysis Tool (MMPAT) into an 
evolutionary framework running in a parallel processing 
environment. This tool is a dynamic space vehicle power 
sub-system resource and performance simulation, and is one 
of several multi-mission design tools in use at JPL. These 
tools use the spacecraft activity plan to simulate uplinked 
commands over the mission duration. With this approach, 
engineers specify several sets of conditional sub-system 
performance criteria to trade off sub-system goals of mass, 
cost, performance and risk. Once specified, the integrated 
evolutionaryhimulation software will then automatically 
generate a design option for each criteria, selecting and 
sizing power elements based on the space system’s 
anticipated performance in the simulated environment. 

In order to quantify the advantage of these techniques we 
compared our automatically generated power sub-system 
designs to two actual JPL spacecraft designs. Theses tests 
were run using activity plans from the Mars Exploration 
Rovers (MER) and Deep Impact (DI) missions. The MER 
activity plan is for a landed mission spending 90 sols 
(Martian days) on the surface. Deep Impact is a comet flyby 
spacecraft with an 8.3 month-long activity plan that includes 
cruise from 1 .O to 1.5 AU from the sun. Initial populations 
were created from randomly selected parameters and design 
requirements identical to MER and DI were specified. 

2. DESIGN LIFE CYCLE 

At the Jet Propulsion Laboratory (JPL) the life cycle of a 
deep space mission normally goes through six phases, each 
culminating with a review by project management and its 
funding agencies [ 2 ] :  
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0 Pre-Phase A: Advanced Studies 
0 Phase A: Mission & System Definition 
0 Phase B: Preliminary Design 
0 Phase C: Design & Build 
0 Phase D: Assembly Test & Launch Ops 
0 Phase E: Operations 

The process starts with Pre-Phase A where the goals and 
objectives of the mission are defined and several plausible 
mission concepts are created. These early mission concepts 
will trade off various elements in the design so that project 
managers can choose between different alternatives for 
mass, cost, performance and risk. Here a trade study is a 
process for seeking one or more optimal solutions when 
there are multiple, often conflicting, objectives. An optimal 
solution in this case means that if one objective improves, 
other objectives are compromised or traded off. The classic 
example of this is in car buying. Buyers must make a 
decision between cost and comfort since the less expensive 
cars are inevitably less spacious. This hypothetical trade-off 
is shown in Figure 1. To make select the design that best 
satisfies their requirements, the buyer would want to 
consider solutions that are evenly distributed along the 
Pareto-optimal front. 

Figure 1 -Hypothetical Car Buying Trade-off [3] 

The cycle of goal definition, mission concept creation and 
design trade study is repeated many times in the early 
formulation phases. Each pass refines and improves the 
resolution of the design and removes design options from 
consideration. The product of this process is a single 
mission architecture characterized such that its effectiveness 
in achieving mission objectives can be properly evaluated. 
The mission architecture typically defines [4]: 

0 The Subject 
Orbit and Constellation 

0 Payload 
0 Flight System 
0 Launch Element 
0 Ground Element 
0 Mission Operations 

0 Command, Control and Communications 
Architecture 

One important aspect of the mission architecture is the flight 
system. The purpose of the space vehicle flight system is to 
transport the payload safely to its destination and enable the 
return of science data to Earth. Typically the flight system is 
composed of several subsystems [2]: 

Power Subsystem 
Command & Data Handling Subsystem 
Telecommunications Subsystem 
Propulsion Subsystem 
Mechanical Subsystem 
Thermal Subsystem 
Guidance Navigation and Control Subsystem 
Spacecraft Flight Software 

Each subsystem is responsible for a particular function, such 
as electrical power generation and distribution, and has 
design characteristics like solar array size, solar cell 
technology, secondary battery size and battery cell 
technology. Designing these subsystems to meet payload, 
trajectory, communication and activity requirements within 
the mass, cost and performance constraints of the project is 
vital for mission success. Automating this process would 
ensure consistent design quality while at the same time 
allowing experts to spend less time on routine tasks and 
more time evaluating various design options. This paper 
discusses an evolutionary computing approach for achieving 
the automated design of spacecraft systems. 

With this methodology, evolutionary computing strategies 
are used with a dynamic, operations-validated power 
subsystem simulation to automate the design search and 
optimize space vehicle subsystem elements for a given set of 
project requirements and constraints. As we will 
demonstrate, this technique has several advantages over 
current approaches that rely on a small number of expert 
opinions employing worst-case estimates by generating 
credible power subsystem design concepts faster and for 
lower cost than humans are able to. 

The paper begins with a brief overview of power subsystem 
design principles. It goes on to discuss the simulation used 
on this effort, the Multi-Mission Power Analysis Tool 
(MMPAT), and how it was integrated with an evolutionary 
computing framework. The paper continues by describing 
the fitness functions used on the effort and concludes by 
comparing the results generated to actual mission designs. 

3. POWER SUBSYSTEM DESIGN 

To properly develop a power subsystem fitness function it is 
important to understand the basic issues in spacecraft power 

2 



subsystem design. Rather than consider all possible power 
sources it focuses on subsystems using photovoltaic solar 
power. Also, no consideration is given to cases where 
primary (non rechargeable) batteries might be used. After a 
brief discussion of some basic power subsystem design 
concepts, the various components are introduced in a logical 
order where later choices hinge upon the earlier selections. 

Power Design Concepts 

The main function of the electrical power subsystem is to 
generate and deliver electricity to all points of utilization on 
the spacecraft. The generated electricity must satisfy the 
power and energy requirements of the subsystems, be within 
the component ratings and voltage limits, as well as taking 
into account planned and unplanned usages of the spacecraft 
devices. 

To handle interruptions in power generation, spacecraft 
power subsystems always provide an energy storage 
mechanism, such as a rechargeable secondary battery, for 
backup. To account for other unexpected problems, mission 
engineers establish flight rules to define the standard 
operating procedure for the spacecraft. Some of these rules 
add reserves such as power margin and energy margin to 
ensure reliable spacecraft operations. Others set critical 
thresholds such as minimum usable battery state of charge 
(SOC). 

Power Margin 

Power margin is the difference between the power generated 
and power consumed. When used as a flight rule, power 
margin establishes the minimum allowable power surplus at 
any point in time. This consideration is particularly 
important in cruise mode where it is necessary to keep the 
secondary battery fully charged in preparation for planned 
activities, solar obscurations or an unexpected contingency. 

Energy Margin 

Energy margin is the difference between the energy 
generated and the energy used during a period of time. 
When used as a flight rule, energy margin establishes the 
minimum surplus of energy during a 24 hour period. On 
landed missions there are often periods where no power is 
generated, so stored energy from a secondary battery must 
be used to keep critical systems operational. In this case, the 
power subsystem design needs to ensure that a positive 
energy balance can be maintained while performing typical 
daily activities so that a low power condition does not arise 
that would interfere with activities or worse, put the mission 
at risk during the night. 

100% depth of discharge. A battery is considered at a 100% 
depth of discharge when its cell voltage drops to a particular 
level. In spacecraft operations, the notion of SOC is 
modified to usable SOC so that engineers can monitor the 
energy available before the spacecraft begins to fail. Usable 
SOC measures the amp-hours that can be extracted from the 
battery before the bus voltage becomes less than the 
predefined minimum which would presumably cause the 
spacecraft to enter a low power state. 

Usable SOC is computed by finding the “limiting SOC” that 
would necessarily exist at the present discharge current and 
the specified low bus voltage. The limiting SOC is then 
subtracted from the present SOC, giving the usable SOC. 

Energy Storage - Secondary Battery 

On a spacecraft, energy is typically stored in the secondary 
battery. There are three battery design considerations: the 
battery chemistry, bus voltage range and battery size. 
Selection of the battery chemistry is based on several 
factors: mass/volume, charge efficiency, thermal 
characteristics, need for battery charger and lifetime. 
Presently there are two battery chemistries commonly in use: 
Lithium-Ion (Li-Ion) and Nickel-Hydrogen (NiH2). Table 1 
compares the characteristics of these two battery 
chemistries. 

In practice, the charge efficiency, thermal characteristics and 
small mass/volume favor Li-Ion for landed missions while 
the longer lifetime and the absence of a chargedcell balancer 
circuit favor using NiH2 for space missions. For example, 
MER used the Li-Ion battery chiefly due to its low mass and 
compact size. DI used the NiH2 battery since volume 
constraints were not an issue and at the time that the DI 
design was done there was no flight experience with Li-Ion 
batteries. 

The bus voltage is selected to work well with the devices 
powered by the bus as well as being compatible with the 
battery chemistry selected. Typical bus voltage ranges are 
from 24 to 36 volts to conform to the NASA 28 Volt Bus 
design standard. Conformance to the standard provides a 
host of off-the-shelf devices and designs. 

Usable State of Charge 

A battery’s available energy capacity, also known as state of 
charge (SOC), is measured as the amp-hours that the battery 
can deliver at the present discharge current before it reaches 
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Table 1. Battery Chemistry Comparison Chart 

The bus voltage range and battery voltage are closely tied. Although batteries are custom made for each mission, in 
Battery voltage is the product of cell voltage and the number 
of cells connected in series. Battery storage capacity is the practice Li-Ion batteries are commonly configured with 8 
product of cell capacity and the number of batteries cells per battery and NiH2 are commonly configured with 22 
connected in parallel. The bus voltage range and the number cells per battery so that they operate well within the voltages 
of battery cells in series should be selected so that at the dictated by the NASA 28 volt bus design. 
maximum bus voltage the battery will attain a h l l  or nearly 
hll state of charge. Bus Voltage Control 

As mentioned above, the bus voltage is selected to work 
well with the devices powered by the bus as well as being 
compatible with the battery chemistry selected. Typically, 
the bus voltage ranges are from 24 to 36 volts to conform to 
the NASA 28 Volt Bus design standard. The Bus Voltage 
Control (BVC) circuitry maintains the power bus within the 

The battery size is calculated by evaluating periods during 
which loads exceed power generated (negative power 
balance). These periods can include night times for landed 
missions, solar obscurations for space missions as well as 
periods during which peak loads occur. The battery must be 
able to supply sufficient power during these periods to 

Connector G 
Cell 1 

Cell 2 

Cell 3 

Cell 4 

Cell 5 
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Figure 2. Example Solar Array Configuration 
specified bus voltage range. On spacecraft the bus voltage 
prevent the bus voltage from dropping below the 
minimum.contro1 varies greatly but one of three approaches 
is often used: shunt limiter, string switching and BVC 
circuitry. 

The shunt limiter approach restricts the power bus from 
exceeding the maximum allowed bus voltage by directing 
sufficient current to shunt resistors when the maximum bus 
voltage is reached. In this case all solar array current is 
accepted from the array with the excess being shunted. 

String switching on the other hand, makes use of a string 
selection matrix that allows the BVC circuitry to effectively 
switch in and out individual strings of solar cells, thus 
limiting the amount of current received from the solar array. 
The BVC circuitry can allow for reducing the battery charge 
rate set point or bus voltage set point as the battery voltage 
and temperature increase. This is commonly associated with 
the NiH2 battery due to its tendency to heat up as its SOC 
nears full charge. 

The Deep Impact mission used the string switching method 
due to its low mass made possible by the lack of shunt 
radiators. MER used the shunt limiter method because of the 
simplicity of the circuitry required and the small shunt 
radiators needed since it was operating in a cold gas 
environment. 

Power Generation - Solar Array 

Solar arrays are divided into segments. Each segment 
consists of a set of parallel strings of solar cells. Within a 
string, the solar cells are connected in series. The segments 
are in turn joined in parallel at the connector to the power 
bus. Figure 2 illustrates an example solar array 
configuration. 

The voltage produced by a single string is the sum of the 
voltages produced by the cells in that string. The current 
produced by a string is equal to the current produced by the 
weakest cell. The current produced by a segment is the sum 
of the currents produced by each string in the segment. The 
voltage produced by a segment is equal to the voltage 
produced by the strongest string. The current produced by 
the array is the sum of the currents produced by each 
segment. The voltage produced by the array is the voltage of 
the strongest segment. 

The voltage produced by the solar array must be sufficient to 
fully charge the battery, that is, it must exceed the maximum 
bus voltage to a degree that will provide a sufficient charge 
current. The current produced by the array must be great 
enough to recharge the battery to prepare it for periods when 
loads exceed array power production. Solar cell current rises 
in direct proportion to the amount of solar insolation striking 
it. Solar cell voltage drops as cell temperature increases. 

The implication of the above two effects are that the closer 
to the sun a spacecraft is, the fewer strings it needs to 
produce the necessary current. However, at the same time 
more cells per string are needed to produce the necessary 
voltage. 

On a spacecraft whose mission requires significant changes 
in the distance from the sun, this can lead to designs with 
some segments having more cells than other segments. The 
segments with more cells produce enough current when 
close to the sun, but as the spacecraft becomes hrther from 
the sun, the shorter strings begin producing sufficient 
voltage due to the lowered temperature and thereby begin 
contributing current, just when the current from the long 
strings becomes insufficient due to the lowered insolation. 

The Deep Impact mission is a good example of these 
concepts. DI used two string lengths: 44 strings with 22 cells 
per string and 112 strings with 16 cells per string. The 
configuration provided adequate current and voltage when 
near earth and also when at encounter (1.5 AU) when the 
cells were colder (more voltage) and receiving less 
insolation (less current). 

Figure 3 shows an example solar array IV curve when near 
Earth at a sun distance of 1.0 AU. Figure 4 shows the IV 
curve when it encounters the comet Tempe1 1 at 1.5 AU. 
The solar array voltage required the battery is 35 volts. The 
current required by DI to provide adequate power margin 
after launch and during early cruise was expected to be 16 
amps. The current required near encounter was expected to 
be 21 amps, due to greater heating requirements and the 
needs of the various instruments. 

One can see by examining the 35 volt points that the 
required currents are provided in both cases. The near Earth 
case depends only on the longer strings while the encounter 
case requires both the long and short strings. 

The solar array configuration on the MER rovers uses a mix 
of string lengths: 15, 16 or 17 cells per string. This is due 
both to restrictions on the area available for solar cells and 
the existence of shadow-casting masts. A shadow on a cell 
effectively removes that cell’s contribution to the voltage 
generated by the string. Without sufficient voltage, a string 
cannot generate current. The number of unshadowed cells 
needed in a string was 15. The extra cells in a string would 
allow it to contribute current even if one or two of its cells 
were in shadow. 

4. POWER SIMULATOR 

An important aspect of this approach is the use of a dynamic 
spacecraft power subsystem simulation that has been 
validated in actual mission operations. Using such a 
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simulation ensures that our design search is based on the 
anticipated operation of the subsystem rather than human 
estimates. This section describes in detail the features we 
required, the simulator that was selected and how the 
simulator's results maps to mission flight rules. MER and DI 
design parameters are listed in Table 2 



Figure 4. Example Encounter Solar Array IV Curve 

Table 2 Summary of Deep Impact and MER Power Subsystem Flight Rules and Design Parameters 

P o w e r  Simulation TOOI requirements 

The task as defined required a simulation that could 
seamlessly handle multiple mission design alternatives and 
phases, and that could be integrated with an optimizer in a 
parallel processing environment. More specifically, the 
simulation needed to be a multiplatform library deployment 
with all of its design characteristics and state variables 
parameterized, and accessible through an Application 
Programming Interface (API). The API would also need to 
allow the user to enter an activity plan and trajectory. 

Moreover, the simulation would need to use actual flight 
project data to quickly predict the resources and 
performance of the subsystem over the mission timeline, and 
would need to run in a closed loop manner with environment 
models that were, preferably, already integrated. Lastly, 
while not specifically required for this task, we wanted the 
simulation to be able to respond dynamically to inputs from 
other subsystems for compatibility with future research 
efforts. 

Power Simulation in Operations 

Ideally our simulator would be validated in operations. 
These operations tools have some unique input and output 
considerations in that each simulation must be able to input 
the design of their subsystem as well as a time-ordered 
sequence of events known as an activity plan. This plan is 
generated daily to determine what the spacecraft is intended 
to do. From this plan, a sequence is built and uploaded as 
instructions to the spacecraft. 

To ensure that activity plans do not over commit resources 
and jeopardize the mission, the simulators must be able to 
predict what the resources will be after running the plan and 
verify that they are within the flight rule margins. 

For example on MER, every sol the rover’s battery state of 
charge and other key pieces of telemetry were supplied to a 
power simulator used by the mission planners to predict 
power generated, loads and the battery state of charge. 
Using this tool, they would then develop a sequence of rover 
commands that would include as much science and other 
useful activity as possible while still maintaining the 
required energy margin. 

On Deep Impact, power analysts ran a power simulation that 
considered all expected loads plus all thermostatically- 
controlled heaters before each TCM. Power generation was 
simulated considering the sun distance and range of sun 
angles to be encountered during the maneuver. Results of 
the simulation were examined to be sure that the specified 
power margin would be maintained throughout the 
maneuver 

Multi-Mission Power Analysis Tool 

Given these requirements and the fact that we wanted a 
proven operations tool, we choose to use the Multi-Mission 
Power Analysis Tool (MMPAT) used on MER and Deep 
Impact. MMPAT is one tool in a suite of Multi-Mission 
Subsystem Analysis Tools at JPL [ 5 ] .  It is a multiplatform 
software simulator currently used in Mars Exploration Rover 
(MER) operations to predict the performance and resources 
of space vehicle electrical power subsystems before a 
sequence of activities is uploaded. 
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The simulation can provide variable fidelity and produces 
dynamic time and sequence dependent results rather than 
static point solutions. As such, it models the behavior of 
power sources and energy storage devices as they interact 
with the spacecraft loads and the environment over a 
mission timeline at a level of detail appropriate to each stage 
of the project lifecycle, which in MER’S case, is operations. 
The models in MMPAT include: 

Solar Array Model 
Solar Array Thermal Model 
Orbital Mechanics 
Astrodynamics Model 
Pointing Model 
Atmospheric Model 
Secondary Battery Model 
Secondary Battery/Thermostatically Controlled 
Heater Thermal Model 
Power Bus Model 
RTG Model 
Power Equipment List Model 

All of the models were developed by power subsystem 
experts or adapted from validated heritage models. The tool 
itself comes with models for many of the most commonly 
used power sources, storage devices and power bus control 
methods used on space vehicles today. All of these models 
have been validated on previous or current missions, such as 
Pathfinder and MER, and give an accurate prediction of the 
system performance and resources. 

The simulation is controlled by model parameters and was 
designed to be data-driven, modular and multiplatform. This 
means the models can be expanded to include additional 
hardware types. It also means that the application can be 
deployed stand-alone or as a library in another application, 
which in our case means integrated with an optimizer in a 
parallel processing environment. Moreover, the 
parameterized interface on MMPAT can also be used to 
change the mission type and analyze different mission 
phases since the tool supports the analysis of planetary 
landers, planetary orbiters, heliocentric orbiters and rovers 
as well as cruise, landed and orbiting phases and special 
events like flyby, TCM and EDL. 

MMPAT Flight Rule Outputs 

In some case MMPAT’s outputs map directly to the flight 
rules, in other cases they do not. The usable SOC maps 
directly as the MMPAT variable: battusable-amphrs. 
However, while the MMPAT variable Emargin measures the 
energy margin of the spacecraft in watt-hours it accumulates 
the value over the lifetime of the mission. In ordered to 
compare this value to the daily energy margin flight rule, we 
needed to subtract the energy margin at the beginning of the 
day from the end-of-day value. 

For power margin, MMPAT calculates the power margin in 
watts based on power actually taken off the solar array. 
Normally this would be fine except in the string switching 
algorithm, strings can be switched off. For a better 
comparison to the flight rule we want to use the power that 
could be generated from the solar array. The equation in this 
case was: 

power margin = sa-Pavail - sa-Pactual + Pmargin 

where: 

sa-Pavail = Power available on array 
sa-Pactual = Power being delivered by array 
Pmargin = margin computed by MMPAT 

5. SYSTEM ARCHITECTURE 

With the flight rules defined and a power subsystem 
simulator selected, we now needed an automated method to 
search through the design space for different sizes and 
combinations of power equipment. We also need an 
architecture that allowed us to test the performance of each 
design using the simulation. The main architectural driver 
was the choice of optimization strategy. Since we wanted to 
find multiple optimal solutions in a single run, evolutionary 
computing was the natural choice. This section describes the 
evolutionary computing strategy and the resulting system 
architecture. 

The Evolutionay Computing Strategy 

Evolutionary computing seeks to generate optimal or near- 
optimal solutions for a given system by using a computer 
program to simulate the biological processes of natural 
selection [6,7]. This means that by using a process of 
random variation and selection through competition in an 
environment, the quality of solutions will iteratively 
improve. Simply put, the process involves generating a 
population of candidate solutions, evaluating how well they 
satisfy the requirements and constraints, and then randomly 
mating the solutions to create children for the next 
generation. The selection of mates is weighted toward the 
better solutions so that they will have a reproductive 
advantage. Implicit in this process is the notion of a 
particulate mechanism of inheritance. 

In biology, organisms have a genetic coding known to as a 
genotype. Their morphology, physiology and behavior are 
referred to as the phenotype [SI. They are related to each 
other in that an organism’s genotype describes influences 
and controls its phenotype. This means that changing an 
organism’s genes will change its function, structure or 
behavior, and will oftentimes affect several characteristics at 
once since genes are typically pleiotropic. So in our 
application the design parameters are the genotype of the 
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system, which succinctly describe and influence the structure 
and behavior of the subsystem or phenotype. Reproducing 
in this instance means contributing some design parameters 
from each parent to the child thus creating a combination of 
both of them that is hopefully better. This evolutionary 
process continues until some number of iterations has 
occurred or until the solution converges. 

To support trade studies the system needed to be able to 
simultaneously generate multiple diverse solutions rather 
than a single point solution. This is achieved by allowing the 
user to create population slots that are used to bin segments 
of the population. Each slot is defined by a conditional that 
sets the membership criteria. The conditional is patterned 
after spacecraft flight rules for power margin, energy 
margin, usable SOC, and has the following form: 

Not less than x units 

Where power margin units are in watts, energy margin units 
are in watt-hours and usable SOC is in amp-hours. 

Typically cruise mission phases use power margin and 
landed missions use energy margin, but users can 
concatenate conditionals if desired. For example, a filter 
may be specified as ‘not less than 20 watts and not less than 
5.5 amp-hrs’. 

The conditional may be modified by another conditional to 
bound the range of the slot. This optional conditional is in 
the form of: 

Not greater than x units 

The conditional may also be modified by an exception that 
ignores the conditional for a certain period of time. The 
exception is in the form of: 

Except from tO to t l  

Exceptions may be concatenated. For example, to set a slot 
for a cruise mission with a trajectory correction maneuver 
that temporarily points its solar arrays away from the Sun 
the user could indicate ‘not less than 20 watts except from 
day 10 to day 11 and not less than 5.5 amp-hrs’. 

In this way the users may emphasize and any number of 
multiple solutions simultaneously. 

PGASIM 

The evolutionary mechanism described above is relatively 
straightforward to implement in software, but since there are 
numerous genetic algorithm frameworks on the market today 
we decided to use one that was already available. After a 
brief survey, we choose PGAPack developed by David 
Levine of the Mathematics and Computer Science Division 
at Argonne National Laboratory [9] .  
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PGAPack is a general-purpose, data-structure-neutral, 
parallel genetic algorithm library. It is intended to provide 
most capabilities desired in a genetic algorithm library, in an 
integrated, seamless, and portable manner. The package 
consists of a set of library routines that supply the user 
multiple levels of control over the optimization process. 
The levels vary from default encodings, with simple 
initialization of parameters and single statement execution, 
to the ability to modi@ all relevant parameters in the 
optimization process at a low level. User written routines 
for evaluation or crossover and mutation can also be inserted 
if necessary. 

Because the calculations of the fitness function involve 
computations that can be quite intensive, executing the 
evolutionary computing algorithm on massively parallel 
computers is essential for high-fidelity models. PGA Pack 
supports this by using the Message Passing Interface (MPI) 
for parallel execution on a number of processors. Thus the 
primary advantages that this package had over others is that 
it executed on cluster systems and is open source. 

PGAPack did require some modifications for use in our 
application. Our changes to the package, which we are 
calling PGASIM to distinguish it from the original, were as 
follows: 

1. 
2. 

3.  

4. 

5 .  

Changed the code from C to C++. 
The user provided functions are now methods in 
user defined classes. 
A comprehensive configuration file is driving the 
algorithm instead of the user making explicit calls 
to set the parameters. 
Increased flexibility by creating more place holders 
for custom code. 
Enhance features like multi-criteria optimization 
and hybrid criteria. 

Design Generation Process 

At the beginning of an optimization run the head node reads 
the PGA and Optimization configuration files. This 
information is then used to instantiate the genetic algorithm 
data structures and create the initial population of power 
subsystem designs using randomly generated design 
parameters. 

Once the initial population has been created, the compute 
nodes are configured by the head node to execute the 
simulation. Each compute node reads a reference MMPAT 
configuration and alters it according to the specific 
parameter values for that member. It also reads in the 
activity plan file, which is the same for all individuals, and 
executes the simulation. 

After all of the members of a population have been 
simulated, the results are evaluated by the head node. First a 
check is made to determine if the design encountered any 



simulation errors that indicate if the design is infeasible, 
such as when the usable state of charge drops to or below 
zero. Then the output results from the simulation are 
examined and the member is put into a slot that satisfies the 
conditional. The ones that do not fit any slot are discarded. 
The members of each slot are then ranked from lowest to 
highest using the ranking criteria. Currently, there are two 
ranking criteria that can be specified by the user, either cost 
or mass. 

The mass of the power subsystem is determined using a 
linear model. The mass of the power subsystem is obtained 
by determining the mass of the solar array and the mass of 
the battery. The solar array mass is determined by 
calculating the total number of solar cells and multiplying 
that value by mass-per-cell constant, Once this value has 
been calculated, the mass of the battery is determined by 
multiplying the battery’s nameplate capacity by the mass- 
per-watt-hours constant. The sum of these two masses, 
determined the total mass of the power subsystem. 

A similar model is used to determine the cost of the power 
subsystem. The cost of the solar array is calculated by 
multiplying the total number of cells with by a cost-per-cell 
constant; the cost of the battery, calculated by multiplying 
the battery’s nameplate capacity by a cost-per-watt-hours 

we would use a more idealized formulation phase activity 
plan for the optimization, but for a better comparison to the 
design, we used an actual activity plan from mission 
operations for both test cases. While this provided a good 
basis for comparison it also caused some problems because 
missions will occasionally violate their own flight rules. 
Because of this, we needed to mask out times when this 
occurred. 

The optimization was run on two separate clusters to test 
system performance. The first is a Dell distributed memory 
parallel processor system with 3.2 GHz Intel Pentium 4 
Xeon processors. The second is a Beowulf cluster with 450 
MHz Intel processors. This section describes the tests cases 
and the results. 

MER Surface Mission Test Case 

MER Spirit Rover was used for the surface mission test 
case. The rover was placed in its actual location of 14.95 
degrees south latitude and given an actual 90 Sol activity 
plan from mission operations. This corresponds to the 
original planned length of surface operations of MER-A at 
the Gusev Crater landing site. The design parameters that we 
were interested in generating and their MER values 
included: 

constant. Total Number of Solar Array Strings: 30 
Total Number of Solar Cells: 501 
Battery Technology: Li-Ion 
Battery Nameplate Capacity: 20.0 amp-hrs 
Bus Control Method: Shunt Limiter 

When the entire population has been slotted and ranked, the 
head node collects the simulation results from the compute 
nodes and checks the stopping condition to decide whether 
the process should continue. If the stopping condition has 

For this optimization the following intervals were used for 
each of the variable design parameters: 

been met, a report is generated containing the design 
parameters of the best population members. Otherwise the 
head node generates a new population. 

Number of Strings : 1 to 40 
Number of Cells per String : 1 to 40 
Nameplate Capacity in amp: 1 to 30 

The top members (lowest cost or mass) are selected to 
continue to the next generation so as not to lose the best 
candidates. The number of elites that are preserved for the 
next generation is calculated by subtracting the population 
replacement size from the population size. No duplicates are 
allowed in this elite survival list so if the same member 
exists at the top of another slot it is ignored and the next best 
candidate is selected. The rest of the replacement population 
is generated using a tournament operator to select parents 
and creating children by varying the parent’s design 
parameters with crossover and mutation. After the new 
population has been generated, the cycle continues. 

6. TEST CASES 

Two different mission scenarios were selected to test this 
automated design system, the MER surface phase and Deep 
Impact cruise phase. The intent was to test the system using 
different phases on different missions and compare the 
generated solutions to the actual mission design. Normally 

The following cost and mass values were used and remained 
fixed throughout the analysis: 

Solar cell cost: $0.832k 
Solar cell mass: 0.01 kg per cell 
Battery cost: $6.75Wamp-hr 
Battery mass: 0.01667 kglwatt-hr 

Using our system linear models to compute the total mass and 
cost of the Spirit configuration, we derived the following 
values: 

Mass of the SA & Battery: 5.29 kg 
Cost ofthe SA & Battery: $551.83k 

Since this was a surface mission only the energy margin 
(EM) and usable SOC (USOC) flight rules were used. The 
following slots were defined as: 
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Slot 1 : EM > M watt-hrs AND USOC > Ma amp-hrs 
Slot 2: EM > 0 watt-hrs AND USOC > Ma amp-hrs 
Slot 3: EM > 2*M watt-hrs AND USOC > Ma amp-hrs 
Slot 4: EM > M watt-hrs AND USOC > 2*Ma amp-hrs 
Slot 5: EM > M watt-hrs AND USOC > 0.2*Ma amp-hrs 
Slot 6: EM > 2*M watt-hrs AND USOC > 2*Ma amp-hrs 
Slot 6: EM > 0 watt-hrs AND USOC > 0.2*Ma amp-hrs 

MER Slot 1 Slot2 Slot 3 Slot4 Slot5 Slot6 

Usable SOC (amp-hrs) > Ma > Ma > Ma > Ma >2Ma >0.2Ma >2Ma 
Total Number of Solar Array 30 32 30 42 32 32 42 

Energy Margin (watt-hrs) > M  > M  > O  > 2M > M  > M  > 2M 

Time masks, in decimal hours, were defined to account for 
start up and late mission where flight rules were violated to 
add more science collection. 

Slot7 
> O  
>0.2Ma 
30 

Surface Mission Results 

Table 3 and 4 shows the designs generated on the Dell 
cluster after 200 and 400 generations, respectively, The first 
column shows the MER design parameters we were 
concerned with, while the remaining columns show the 
generated design parameters with slot 1 duplicating the 
MER power subsystem flight rules. 

Strings 
Total Number of Solar Cells 
Battery Technology 
Battery Nameplate Capacity 

The first issue that needed to be addressed was the values of 
evolutionary parameters. Based on our experience we chose 
appropriate mutation and crossover probabilities on a 
population size of 128. Convergence of the design 
parameters using these evolutionary values occurred 
somewhere between 200 and 400 generations. 

501 458 432 614 458 458 614 432 
Li Ion Li Ion Li Ion Li Ion Li Ion Li Ion Li Ion Li Ion 
20.0 26.62 26.62 18.82 26.62 26.62 18.82 26.62 

Table 3 MER Surface Mission Power Subsystem Designs after 200 Generations 

(amp-hrs) 
Mass of SA & Battery (kg) 
Cost of SA & Battery ($1~) 

5.28 5.02 4.76 6.45 5.02 5.02 6.45 4.76 
551.83 560.71 539.08 637.92 560.71 560.71 637.92 539.08 

I MER Slot 1 Slot2 

Usable SOC (amp-hrs) h Ma > Ma > Ma 
Total Number of Solar Array 30 34 29 

Energy Margin (watt-hrs) > M  > M  > O  
Slot 3 Slot4 Slot 5 Slot 6 Slot 7 
> 2M > M  > M  > 2M > O  
> Ma >2Ma >0.2Ma >2Ma >0.2Ma 
38 34 34 38 29 

Strings 
Total Number of Solar Cells 
Battery Technology 
Battery Nameplate Capacity 
(amp-hrs) 

500 477 417 533 477 477 533 417 
Li Ion Li Ion Li Ion Li Ion Li Ion Li Ion Li Ion Li Ion 
20.0 22.42 26.62 22.21 22.42 22.42 22.21 26.62 



Mass of SA & Battery (kg) 5.28 5.14 4.6 1 5.70 I 5.14 I 5.14 5.70 - 

Using 128 nodes, 400 generations of this 90 day activity 
plan took 7 hours to complete on the small clusters and less 
than one hour on the large cluster using 1000 nodes. 

4.61 

Deep Impact Cruise Mission Test Case 

The Deep Impact mission was used for the cruise mission 
test case. The spacecraft trajectory starts from Earth or 1.0 
Astronomical Units (AU) and travels an ellipse to 1.5 AU 
where it will encounter Comet Tempe1 1. It took 
approximately 8.3 months to traverse this distance. 

Cost of SA & Battery ($k) 551.83 548.22 

The activity plan was from DI operations. During the 
mission there were five trajectory correction maneuvers 
where the solar array edge-on to the Sun. This had the effect 
of forcing the battery to be the sole source of power to the 
spacecraft during this time. 

526.60 593.38 1 548.22 1 548.22 593.39 526.60 

The design parameters that we were interested in generating 
and their DI values included: 

Total Number of Solar Array Strings: 158 
Total Number of Solar Cells: 2792 
Battery Technology: NiH2 
Battery Nameplate Capacity: 16.00 amp-hrs. 

For this optimization the following intervals were used for 
each of the variable design parameters: 

Number of Strings : 1 to 40 
Number of Cells per String : 1 to 40 
Nameplate Capacity in amp: 1 to 30 

The following cost and mass values were used and remained 
fixed throughout the analysis: 

Solar cell cost: $0.832k 
Solar cell mass: 0.01 kg per cell 
Battery cost: $19.3k/amp-hr 
Battery mass: 0.01667 kg/watt-hr 

Table 5.  Deep Impact Cruise Mission Power Subsystem Designs after 239 Generations 
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1 DI I Slot 1 1 Slot2 1 Slot 3 1 Slot4 1 Slot 5 1 Slot 6 

Strings 
Total Number of Solar Cells I 2792 I2862 12676 I2712 I3218 

~ 1 > 2.5*D I >0.5*D I > 1.5*D 1 >2*D Power Margin I D  I > D  1 > o  
Total Number of Solar Array 1 158 I 169 I 154 1 159 I 182 I 188 I204  

3371 3830 
Battery Technology 
Battery Nameplate Capacity 

NiH2 NiH2 N iH2 NiH2 1 NiH2 NiH2 NiH2 
16.00 11.35 11.56 11.35 I 12.48 14.88 24.29 

(amp-hrs) 
Mass of SA & Battery (kg) 
Cost of SA & Battery ($k) 

Since this was a surface mission only the power margin 
flight rules was used. The following flight rules were used: 

28.19 28.81 26.95 27.3 1 32.39 33.96 38.71 
2577.94 2561.58 2410.23 2436.78 2875.87 3041.23 3572.84 

Power Margin: D watts 

The following slots were defined: 

Slot 1 : Power Margin > D watts 
Slot 2: Power Margin > 0 watts 
Slot 3: Power Margin > 0.5*D watts 
Slot 4: Power Margin > 1.5*D watts 
Slot 5: Power Margin > 2*D watts 
Slot 6: Power Margin > 2.5*D watts 

Time masks, in decimal hours, were defined to account for 
trajectory correction maneuvers and the release of the 
impactor. 

Cruise Mission Results 

Table 5 shows the designs generated on the Dell cluster after 

293 generations. The first column shows the DI design 
parameters we were concerned with, while the remaining 
columns show the generated design parameters. Slot 1 is 
identical to the DI power subsystem flight rules. 

Using 51 nodes, 293 generations of this 8.3 month activity 
plan took 12 hours to complete on the small clusters and less 
than one hour on the large cluster using 1000 nodes.. 

7. SUMMARY OF RESULTS 

Results indicate that credible design concepts for spacecraft 
power sub-systems can be generated in an hour after about 
20,000 MMPAT evaluations. Evolved designs showed 
slightly better cost and mass performance and were 
automatically generated as a trade study in a less than one 
hour. Multiple diverse designs with different mass, cost, 
performance and risk postures were generated providing 
project management and its funding agencies several 
plausible design concepts to choose from. These results 
demonstrate human-competitive advantages by generating 

without the -need for initial design requiring domain 
expertise. 

8. CONCLUSIONS 

It takes a team of experienced JPL domain experts at least 
two weeks to generate a credible pre-award mission concept 1 
[lo]. Results obtained using two different mission scenarios 
in different mission phases indicate that credible design 
concepts for a spacecraft power subsystem can be generated 
in an hour using evolutionary computing and a dynamic 
space vehicle power subsystem resource and performance 
simulation in a parallel processing environment. Moreover, 
multiple diverse designs with different mass, cost, 
performance and risk postures can be generated providing 
project management and its funding agencies several 
plausible design concepts to choose from. The results also 
seem to indicate that the speed of automated design 
generation appears to be driven primarily by the length of 
the mission to be evaluated and speed of the processing 
hardware, rather than the number of design parameters to be 
optimized. 

Of course, several components are required to achieve good 
results: 

1. 
2. 
3. 

System flight rules and/or technical requirements 
Time-ordered list of S/C trajectory and state changes 
A validated system simulation capable of ingesting 
time-ordered events, design parameters and outputting 
relevant system state variables 

4. An optimization strategy 
5. A parallel processing environment 
6. A parallel- processing integration environment 

Nevertheless, as promising as the results are there is still 
much work to be done before this system can be used in the 
flight project design process. On the implementation side, 
this approach also needs to be applied to other flight system 
subsystems. Once completed all of the subsystems need to 
be integrated together to provide more comprehensive 
design solutions. 
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In addition, it is likely that more power subsystem design 
parameters such as battery and solar cell technology will 
need to be optimized. It is important that when such 
variables are added, the simulation model supports the 
tradeoffs to be made and that a flight rule and/ or technical 
requirement is available that can be checked. 

On the theoretical side, it will be important test the system 
against other missions. Doing this will provide additional 
confidence in the results and allow us to better tune the 
evolution parameters so that solutions are found as 
efficiently as possible. In addition, better non-linear cost and 
mass functions will need to be integrated into the system. 

Still this approach appears to offer human-competitive 
advantages by generating credible design concepts faster 
than humans are able to. Currently early mission concepts 
are created by a few experienced domain experts employing 
worst-case estimates. Automated design techniques provide 
anyone the ability to rapidly select and size design 
components, without bias, based on the space system’s 
anticipated performance in the simulated environment. 
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Abstract-This paper’.2 discusses the application of 
evolutionary computing to a dynamic space vehicle power 
subsystem resource and performance simulation in a parallel 
processing environment. Our objective is to demonstrate the 
feasibility, application and advantage of using evolutionary 
computation techniques for the early design search and 
optimization of space systems. With this approach, 
engineers specify several sets of conditional subsystem 
performance criteria to trade off subsystem goals of mass, 
cost, performance and risk. Once specified, the integrated 
evolutionary/simulation software will then automatically 
generate a design option for each criteria, selecting and 
sizing power elements based on the space system’s 
anticipated performance in the simulated environment. 
Initial Activity plans from two actual JPL missions, Mars 
Exploration Rovers (MER) and Deep Impact (DI) are used 
to test the software. Our results have shown human- 
competitive advantages by generating credible design 
concepts much faster than humans are able to and without 
the need for expert initial designs. 
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1. INTRODUCTION 

This work describes the application of evolutionary 
computational techniques to the automatic optimization of 
spacecraft power sub-systems. Over the past three years the 
Evolutionary Computation Group at NASA’s Jet Propulsion 
Laboratory (JPL) has had the objective of demonstrating the 
feasibility, application and advantage of using biologically 
inspired evolutionary computational techniques for the early 
design search and optimization of space systems. In general, 
we have demonstrated that the same computationaI tools 

’ 0-7803-9546-8/06/$20.000 2006 IEEE ’ IEEEAC paper #528, Version 1, Updated Oct, 14 2005 

used for computer aided design and for design evaluation 
can also be used for the automated optimization of designs 
[I]. These multi-parameter design simulators are run on 
cluster computers as a parallel population of designs with 
randomly varying input parameters and starting with a 
random initial designs. The results are competed and 
selected down to a smaller sub-set of parents that provide 
the basis (using genetic operators of mutation and gene 
cross-over) for the design parameters of the next generation. 
Given a large enough population, sufficient generations and 

the right conditions for evoIution, we have demonstrated the 
feasibility of automatically optimizing simulated designs, 

We applied these evolutionary techniques by incorporating 
the Multi-Mission Power Analysis Tool (MMPAT) into an 
evolutionary framework running in a parallel processing 
environment, This tool is a dynamic space vehicle power 
sub-system resource and performance simulation, and is one 
of several multi-mission design tools in use at JPL. These 
tools use the spacecraft activity plan to simulate uplinked 
commands over the mission duration. With this approach, 
engineers specify several sets of conditional sub-system 
performance criteria to trade off sub-system goals of mass, 
cost, performance and risk. Once specified, the integrated 
evolutionaryhimulation software will then automatically 
generate a design option for each criteria, selecting and 
sizing power elements based on the space system’s 
anticipated performance in the simulated environment. 

In order to quantify the advantage of these techniques we 
compared our automatically generated power sub-system 
designs to two actual JPL spacecraft designs. Theses tests 
were run using activity plans from the Mars Exploration 
Rovers (MER) and Deep Impact (DI) missions. The MER 
activity plan is for a landed mission spending 90 sols 
(Martian days) on the surface. Deep Impact is a comet flyby 
spacecraft with an 8.3 month-long activity plan that includes 
cruise from 1 .O to 1 S AU from the sun. Initial populations 
were created from randomly selected parameters and design 
requirements identical to MER and DI were specified. 

2. DESIGN LIFE CYCLE 

At the Jet Propulsion Laboratory (JPL) the life cycle of a 
deep space mission normally goes through six phases, each 
culminating with a review by project management and its 
funding agencies [2]: 
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Pre-Phase A: Advanced Studies 
0 Phase A: Mission & System Definition 
0 Phase B: Preliminary Design 

Phase C: Design & Build 
0 Phase D: Assembly Test & Launch Ops 
0 Phase E: Operations 

The process starts with Pre-Phase A where the goals and 
objectives of the mission are defined and several plausible 
mission concepts are created. These early mission concepts 
will trade off various elements in the design so that project 
managers can choose between different alternatives for 
mass, cost, performance and risk, Here a trade study is a 
process for seeking one or more optimal solutions when 
there are multiple, often conflicting, objectives. An optimal 
solution in this case means that if one objective improves, 
other objectives are compromised or traded off. The classic 
example of this is in car buying, Buyers must make a 
decision between cost and comfort since the less expensive 
cars are inevitably less spacious. This hypothetical trade-off 
is shown in Figure 1. To make select the design that best 
satisfies their requirements, the buyer would want to 
consider solutions that are evenly distributed along the 
Pareto-optimal front. 

0 !  I 

Cost ($13 
10 30 45 65 90 

Figure 1 -Hypothetical Car Buying Trade-off [3] 

The cycle of goal definition, mission concept creation and 
design trade study is repeated many times in the early 
formulation phases. Each pass refines and improves the 
resolution of the design and removes design options from 
consideration, The product of this process is a single 
mission architecture characterized such that its effectiveness 
in achieving mission objectives can be properly evaluated. 
The mission architecture typically defines [4]: 

Thesubject 
0 Orbit and Constellation 
0 Payload 

Flight System 
Launch Element 

0 Ground Element 
Mission Ouerations 

0 Command, Control and Communications 
Architecture 

One important aspect of the mission architecture is the flight 
system. The purpose of the space vehicle flight system is to 
transport the payload safely to its destination and enable the 
return of science data to Earth. Typically the flight system is 
composed of several subsystems [2]: 

Power Subsystem 
Command & Data Handling Subsystem 
Telecommunications Subsystem 
Propulsion Subsystem 
Mechanical Subsystem 
Thermal Subsystem 
Guidance Navigation and Control Subsystem 
Spacecraft Flight Software 

Each subsystem is responsible for a particular function, such 
as electrical power generation and distribution, and has 
design characteristics like solar array size, solar cell 
technology, secondary battery size and battery cell 
technology. Designing these subsystems to meet payload, 
trajectory, communication and activity requirements within 
the mass, cost and performance constraints of the project is 
vital for mission success. Automating this process would 
ensure consistent design quality while at the same time 
allowing experts to spend less time on routine tasks and 
more time evaluating various design options. This paper 
discusses an evolutionary computing approach for achieving 
the automated design of spacecraft systems. 

With this methodology, evolutionary computing strategies 
are used with a dynamic, operations-validated power 
subsystem simulation to automate the design search and 
optimize space vehicle subsystem elements for a given set of 
project requirements and constraints. As we will 
demonstrate, this technique has several advantages over 
current approaches that rely on a small number of expert 
opinions employing worst-case estimates by generating 
credible power subsystem design concepts faster and for 
lower cost than humans are able to. 

The paper begins with a brief overview of power subsystem 
design principles. It goes on to discuss the simulation used 
on this effort, the Multi-Mission Power Analysis Tool 
(MMPAT), and how it was integrated with an evolutionary 
computing framework. The paper continues by describing 
the fitness fimctions used on the effort and concludes by 
comparing the results generated to actual mission designs. 

3. POWER SUBSYSTEM DESIGN 

To properly develop a power subsystem fitness function it is 
important to understand the basic issues in spacecraft power 
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subsystem design. Rather than consider all possible power 
sources it focuses on subsystems using photovoltaic solar 
power. Also, no consideration is given to cases where 
primary (non rechargeable) batteries might be used. After a 
brief discussion of some basic power subsystem design 
concepts, the various components are introduced in a logical 
order where later choices hinge upon the earlier selections. 

Power Design Concepts 

The main function of the electrical power subsystem is to 
generate and deliver electricity to all points of utilization on 
the spacecraft. The generated electricity must satisfy the 
power and energy requirements of the subsystems, be within 
the component ratings and voitage limits, as well as taking 
into account planned and unplanned usages of the spacecraft 
devices. 

To handle interruptions in power generation, spacecraft 
power subsystems always provide an energy storage 
mechanism, such as a rechargeable secondary battery, for 
backup. To account for other unexpected problems, mission 
engineers establish flight rules to define the standard 
operating procedure for the spacecraft. Some of these rules 
add reserves such as power margin and energy margin to 
ensure reliable spacecraft operations. Others set critical 
thresholds such as minimum usable battery state of charge 
(SOC). 

Power Margin 

Power margin is the difference between the power generated 
and power consumed. When used as a flight rule, power 
margin establishes the minimum allowable power surplus at 
any point in time. This consideration is particularly 
important in cruise mode where it is necessary to keep the 
secondary battery fully charged in preparation for planned 
activities, solar obscurations or an unexpected contingency. 

For example, when the Mars Exploration Rover (MER) was 
in cruise a flight rule was established requiring a power 
margin of 60 watts be maintained at all times, even during 
Trajectory Correction Maneuvers (TCM). This rule was 
more conservative than in other missions but was necessary 
since they used Lithium-Ion batteries that were untested in 
flight at that time. 

Energy Margin 

Energy margin is the difference between the energy 
generated and the energy used during a period of time. 
When used as a flight rule, energy margin establishes the 
minimum surplus of energy during a 24 hour period. On 
landed missions there are often periods where no power is 
generated, so stored energy from a secondary battery must 
be used to keep critical systems operational. In this case, the 
power subsystem design needs to ensure that a positive 
energy balance can be maintained while performing typical 
daily activities so that a low power condition does not arise 

that would interfere with activities or worse, put the mission 
at risk during the night. 

For example, when the MER rovers were operating on the 
surface of Mars, an energy margin of 75 watt-hours was 
established by flight rule, so any plan created for the sol 
(Mars solar day) must store least this amount of energy 
during a full 24 hour sol. This includes battery charging and 
shunting, the total of which is defined as margin. 

Usable State of Charge 

A battery’s available energy capacity, also known as state of 
charge (SOC), is measured as the amp-hours that the battery 
can deliver at the present discharge current before it reaches 
100% depth of discharge. A battery is considered at a 100% 
depth of discharge when its cell voltage drops to a particular 
level. In spacecraft operations, the notion of SOC is 
modified to usable SOC so that engineers can monitor the 
energy available before the spacecraft begins to fail. Usable 
SOC measures the amp-hours that can be extracted from the 
battery before the bus voltage becomes less than the 
predefined minimum which would presumably cause the 
spacecraft to enter a low power state. 

Usable SOC is computed by finding the “limiting SOC” that 
would necessarily exist at the present discharge current and 
the specified low bus voltage, The limiting SOC is then 
subtracted from the present SOC, giving the usable SOC. 

Usable state of charge is useful when specifying a minimum 
allowable SOC in that it considers the capacity of the battery 
as well as the present rate of discharge. The MER flight rule 
used in cruise and surface specifies that usable SOC shall 
not be allowed below 5.5 amp-hours. 

Energy Storage - Secondary Battery 

On a spacecraft, energy is typically stored in the secondary 
battery. There are three battery design considerations: the 
battery chemistry, bus voltage range and battery size. 
Selection of the battery chemistry is based on several 
factors: mass/volume, charge efficiency, thermal 
characteristics, need for battery charger and lifetime. 
Presently there are two battery chemistries commonly in use: 
Lithium-Ion (Li-Ion) and Nickel-Hydrogen (NiH2), Table 1 
compares the characteristics of these two battery 
chemistries, 

In practice, the charge efficiency, thermal characteristics and 
small mass/volume favor Li-Ion for landed missions while 
the longer lifetime and the absence of a chargerkell balancer 
circuit favor using NiH2 for space missions. For example, 
MER used the Li-Ion battery chiefly due to its low mass and 
compact size, DI used the NiH2 battery since volume 
constraints were not an issue and at the time that the DI 
design was done there was no flight experience with Li-Ion 
batteries. 
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The bus voltage is selected to work well with the devices 
powered by the bus as well as being compatible with the 
battery chemistry selected, Typical bus voltage ranges are 
from 24 to 36 volts to conform to the NASA 28 Volt Bus 
design standard. Conformance to the standard provides a 
host of off-the-shelf devices and designs. 

Table 1 .  Battery Chemistry Comparison Chart 

The bus voltage range and battery voltage are closely tied. which loads exceed power generated (negative power 
Battery voltage is the product of cell voltage and the number balance). These periods can include night times for landed 
of cells connected in series. Battery storage capacity is the missions, solar obscurations for space missions as well as 
product of cell capacity and the number of batteries periods during which peak loads occur. The battery must be 
connected in parallel. The bus voltage range and the number able to supply suficient power during these periods to 
of battery cells in series should be selected so that at the 
maximum bus voltage the battery will attain a full or nearly Although batteries are custom made for each mission, in 
full state of charge. 

practice Li-Ion batteries are commonly configured with 8 
The battery size is calculated by evaluating periods dur d NiH2 are cornmonk confiiured with 22 

Cell 1 

Cell 2 

Cell 3 

Cell 4 

Segment 3 I Segment 1 

Cell 5 b 
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cells per battery so that they operate well within the voltages 
dictated by the NASA 28 volt bus design. 

Bus Voltage Control 

As mentioned above, the bus voltage is selected to work 
well with the devices powered by the bus as well as being 
compatible with the battery chemistry selected. Typically, 
the bus voltage ranges are from 24 to 36 volts to conform to 
the NASA 28 Volt Bus design standard. The Bus Voltage 
Control (BVC) circuitry maintains the power bus within the 

Figure 2. Example Sa 
specified bus voltage range. On spacecraft the bus voltage 
prevent the bus voltage from dropping below the 
minimum.contro1 varies greatly but one of three approaches 
is often used: shunt limiter, string switching and BVC 
circuitry. 

The shunt limiter approach restricts the power bus from 
exceeding the maximum allowed bus voltage by directing 
suffrcient current to shunt resistors when the maximum bus 
voltage is reached. In this case all solar array current is 
accepted from the array with the excess being shunted. 

String switching on the other hand, makes use of a string 
seIection matrix that allows the BVC circuitry to effectively 
switch in and out individual strings of solar cells, thus 
limiting the amount of current received from the solar array. 
The BVC circuitry can allow for reducing the battery charge 
rate set point or bus voltage set point as the battery voltage 
and temperature increase. This is commonly associated with 
the NiH2 battery due to its tendency to heat up as its SOC 
nears ful l  charge. 

The Deep Impact mission used the string switching method 
due to its low mass made possible by the lack of shunt 
radiators. MER used the shunt limiter method because of the 
simplicity of the circuitry required and the small shunt 
radiators needed since it was operating in a cold gas 
environment. 

rlar Array Configuration 

segment. The voltage produced by the array is the voltage of 
the strongest segment. 

The voltage produced by the solar array must be sufficient to 
fully charge the battery, that is, it must exceed the maximum 
bus voltage to a degree that will provide a sufficient charge 
current. The current produced by the array must be great 
enough to recharge the battery to prepare it for periods when 
loads exceed array power production. Solar cell current rises 
in direct proportion to the amount of solar insolation striking 
it. Solar cell voltage drops as cell temperature increases. 

The implication of the above two effects are that the closer 
to the sun a spacecraft is, the fewer strings it needs to 
produce the necessary current. However, at the same time 
more cells per string are needed to produce the necessary 
voltage. 

On a spacecraft whose mission requires significant changes 
in the distance from the sun, this can lead to designs with 
some segments having more cells than other segments. The 
segments with more cells produce enough current when 
close to the sun, but as the spacecraft becomes further from 
the sun, the shorter strings begin producing sufficient 
voltage due to the lowered temperature and thereby begin 
contributing current, just when the current from the long 
strings becomes insufficient due to the lowered insolation. 

Power Generation - Solar Array The Deep Impact mission is a good example of these 

Solar arrays are divided into segments. Each segment 
consists of a set of parallel strings of solar cells. Within a 
string, the solar cells are connected in series. The segments 
are in turn joined in parallel at the connector to the power 
bus. Figure 2 illustrates an example solar array 
configuration. 

The voltage produced by a single string is the sum of the 
voltages produced by the celIs in that string. The current 
produced by a string is equal to the current produced by the 
weakest cell. The current produced by a segment is the sum 
of the currents produced by each string in the segment. The 
voltage produced by a segment is equal to the voltage 
produced by the strongest string. The current produced by 
the array is the sum of the currents produced by each 

concepts, DI used two string lengths: 44 strings with 22 cells 
per string and 112 strings with 16 cells per string. The 
configuration provided adequate current and voltage when 
near earth and also when at encounter (1.5 AU) when the 
cells were colder (more voltage) and receiving less 
insolation (less current), 

Figure 3 shows an example solar array 1V curve when near 
Earth at a sun distance of 1.0 AU. Figure 4 shows the IV 
curve when it encounters the comet Tempe1 1 at 1.5 AU. 
The solar array voltage required the battery is 35 volts. The 
current required by DI to provide adequate power margin 
after Iaunch and during early cruise was expected to be 16 
amps. The current required near encounter was expected to 
be 21 amps, due to greater heating requirements and the 
needs of the various instruments. 
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One can see by examining the 35 volt points that the 
required currents are provided in both cases. The near Earth 
case depends only on the longer strings while the encounter 
case requires both the long and short strings. 

The solar array configuration on the MER rovers uses a mix 
of string lengths: 15, 16 or 17 cells per string. This is due 
both to restrictions on the area available for solar cells and 
the existence of shadow-casting masts. A shadow on a cell 
effectively removes that cell's contribution to the voltage 
generated by the string. Without suficient voltage, a string 
cannot generate current. The number of unshadowed cells 
needed in a string was 15. The extra cells in a string would 
allow it to contribute current even if one or two of its cells 
were in shadow, 

4. POWER SIMULATOR 

An important aspect of this approach is the use of a dynamic 
spacecraft power subsystem simulation that has been 
validated in actual mission operations. Using such a 
simulation ensures that our design search is based on the 
anticipated operation of the subsystem rather than human 
estimates. This section describes in detail the features we 
required, the simulator that was selected and how the 
simulator's results maps to mission flight rules. MER and DI 
design parameters are listed in Table 2 

... - "  . . ,  - , n . .  w., 

Solar Array bV Curve 
Insolation = 1254.1 W/m"2, Sun Distance = 1 .oooO AU, temp = 82.712762 C 
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Solar Array CV Curve 
Imsohtion = 552.4 WhV2, Sun Distance = 1 .XI68 AU, temp = 18.653786 C 



Figure 4.  Example Encounter Solar Array IV Curve 

Bus Voltage 
Mass of Solar Array Cell 
Cost of Solar Array Cell 
Mass of Battery Cell 
Cost of Battery Cell 

Table 2 Summary of Deep Impact and MER Power Subsystem Flight Rules and Design Parameters 

24-3 2.8 24-32.8 26.8-35 
0.01 kg 0.01 kg 0.01 kg 
$0.832k $0.832k $0.83 2 k 
0.01 67 kg/watt-hr 0.0167 kg/watt-hr 0.01 67 kg/watt-hr 
$6.75 Wamp-hr $6.75k/amp- hr $ 1  5.9Wamp-hr 

Power Simulation Tool requirements 

The task as defined required a simulation that could 
seamIessly handle multiple mission design alternatives and 
phases, and that could be integrated with an optimizer in a 
parallel processing environment. More specifically, the 
simulation needed to be a multiplatform library deployment 
with all of its design characteristics and state variables 
parameterized, and accessible through an Application 
Programming Interface (API). The APT would also need to 
allow the user to enter an activity plan and trajectory. 

Moreover, the simulation would need to use actual flight 
project data to quickly predict the resources and 
performance of the subsystem over the mission timeline, and 
would need to run in a closed loop manner with environment 
models that were, preferably, already integrated. Lastly, 
while not specifically required for this task, we wanted the 
simulation to be able to respond dynamically to inputs from 
other subsystems for compatibility with future research 
efforts. 

Power Simulation in Operations 

Ideally our simulator would be vaiidated in operations. 
These operations tools have some unique input and output 
considerations in that each simulation must be able to input 
the design of their subsystem as well as a time-ordered 
sequence of events known as an activity plan. This plan is 
generated daily to determine what the spacecraft is intended 
to do. From this plan, a sequence is built and uploaded as 
instructions to the spacecraft. 

and jeopardize the mission, the simulators must be able to 
predict what the resources will be after running the plan and 
verify that they are within the flight rule margins. 

For example on MER, every sol the rover’s battery state of 
charge and other key pieces of telemetry were supplied to a 
power simulator used by the mission planners to predict 
power generated, Ioads and the battery state of charge. 
Using this tool, they would then develop a sequence of rover 
commands that would include as much science and other 
useful activity as possible while still maintaining the 
required energy margin. 

On Deep Impact, power analysts ran a power simulation that 
considered all expected loads plus all thermostatically- 
controlled heaters before each TCM. Power generation was 
simulated considering the sun distance and range of sun 
angles to be encountered during the maneuver. Results of 
the simulation were examined to be sure that the specified 
power margin would be maintained throughout the 
maneuver 

Mulfi-Mission Power Analysis Tool 

Given these requirements and the fact that we wanted a 
proven operations tool, we choose to use the Multi-Mission 
Power Analysis Tool (MMPAT) used on MER and Deep 
Impact. MMPAT is one tool in a suite of Multi-Mission 
Subsystem Analysis Tools at JPL [SI. It is a multiplatform 
s o h a r e  simulator currently used in Mars Exploration Rover 
(MER) operations to predict the performance and resources 
of space vehicle electrical power subsystems before a 
sequence of activities is upIoaded. 
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The simulation can provide variable fidelity and produces 
dynamic time and sequence dependent results rather than 
static point solutions. As such, it models the behavior of 
power sources and energy storage devices as they interact 
with the spacecraft loads and the environment over a 
mission timeline at a level of detail appropriate to each stage 
of the project lifecycle, which in MER’S case, is operations. 
The models in MMPAT include: 

Solar Array Model 
Solar Array Thermal Model 
Orbital Mechanics 
Astrodynamics Model 
Pointing Model 
Atmospheric Model 
Secondary Battery Model 
Secondary BatteqdThermostatically Controlled 
Heater Thermal Model 
Power Bus Model 
RTG Model 
Power Equipment List Model 

All of the models were developed by power subsystem 
experts or adapted from validated heritage models. The tool 
itself comes with models for many of the most commonly 
used power sources, storage devices and power bus control 
methods used on space vehicles today. All of these models 
have been validated on previous or current missions, such as 
Pathfinder and MER, and give an accurate prediction of the 
system performance and resources. 

The simulation is controlled by model parameters and was 
designed to be data-driven, modular and multiplatform. This 
means the models can be expanded to include additional 
hardware types. It also means that the application can be 
deployed stand-alone or as a library in another application, 
which in our case means integrated with an optimizer in a 
parallel processing environment. Moreover, the 
parameterized interface on MMPAT can also be used to 
change the mission type and analyze different mission 
phases since the tool supports the analysis of planetary 
landers, planetary orbiters, heliocentric orbiters and rovers 
as well as cruise, landed and orbiting phases and special 
events like flyby, TCM and EDL. 

MMPAT Flight Rule Outputs 

In some case MMPAT’s outputs map directly to the flight 
rules, in other cases they do not. The usable SOC maps 
directly as the MMPAT variable: ban-usable-amphrs. 
However, while the MMPAT variable Emargin measures the 
energy margin of the spacecraft in watt-hours it accumulates 
the value over the lifetime of the mission. In ordered to 
compare this value to the daily energy margin flight rule, we 
needed to subtract the energy margin at the beginning of the 
day from the end-of-day value. 

For power margin, MMPAT calculates the power margin in 
watts based on power actually taken off the solar array. 
Normally this would be fine except in the string switching 
algorithm, strings can be switched off. For a better 
comparison to the flight rule we want to use the power that 
could be generated from the solar array. The equation in this 
case was: 

power margin = sa-Pavail - sa-Pactual t Pmargin 

where: 

sa-Pavail = Power available on array 
sa-Pactual = Power being delivered by array 
Pmargin = margin computed by MMPAT 

5. SYSTEM ARCHITECTURE 

With the flight rules defined and a power subsystem 
simulator selected, we now needed an automated method to 
search through the design space for different sizes and 
combinations of power equipment. We also need an 
architecture that allowed us to test the performance of each 
design using the simulation. The main architectural driver 
was the choice of optimization strategy. Since we wanted to 
find multiple optimal solutions in a single run, evolutionary 
computing was the natural choice. This section describes the 
evolutionary computing strategy and the resulting system 
architecture. 

The Evolutionay Computing Strategy 

Evolutionary computing seeks to generate optimal or near- 
optimal solutions for a given system by using a computer 
program to simulate the biological processes of natural 
selection [6,7]. This means that by using a process of 
random variation and selection through competition in an 
environment, the quality of solutions will iteratively 
improve. Simply put, the process involves generating a 
population of candidate solutions, evaluating how well they 
satisfy the requirements and constraints, and then randomly 
mating the solutions to create children for the next 
generation. The selection of mates is weighted toward the 
better solutions so that they will have a reproductive 
advantage. Implicit in this process is the notion of a 
particulate mechanism of inheritance, 

In biology, organisms have a genetic coding known to as a 
genotype. Their morphology, physiology and behavior are 
referred to as the phenotype [SI. They are reIated to each 
other in that an organism’s genotype describes influences 
and controls its phenotype. This means thai changing an 
organism’s genes will change its function, structure or 
behavior, and will oftentimes affect several characteristics at 
once since genes are typically pleiotropic. So in our 
application the design parameters are the genotype of the 
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system, which succinctly describe and influence the structure 
and behavior of the subsystem or phenotype. Reproducing 
in this instance means contributing some design parameters 
from each parent to the child thus creating a combination of 
both of them that is hopefully better. This evolutionary 
process continues until some number of iterations has 
occurred or until the solution converges. 

To support trade studies the system needed to be able to 
simultaneously generate multiple diverse solutions rather 
than a single point solution, This is achieved by allowing the 
user to create population slots that are used to bin segments 
of the population. Each slot is defined by a conditional that 
sets the membership criteria. The conditional is patterned 
after spacecraft flight rules for power margin, energy 
margin, usable SOC, and has the following form: 

0 Not less than x units 

Where power margin units are in watts, energy margin units 
are in watt-hours and usable SOC is in amp-hours. 

Typically cruise mission phases use power margin and 
landed missions use energy margin, but users can 
concatenate conditionals if desired. For example, a filter 
may be specified as ‘not less than 20 watts and not less than 
5 .5  amp-hrs’. 

The conditional may be modified by another conditional to 
bound the range of the slot. This optional conditional is in 
the form of: 

0 Not greater than x units 

The conditional may also be modified by an exception that 
ignores the conditional for a certain period of time. The 
exception is in the form of: 

0 Except from tO to t 1 

Exceptions may be concatenated. For example, to set a slot 
for a cruise mission with a trajectory correction maneuver 
that temporarily points its solar arrays away from the Sun 
the user could indicate ‘not less than 20 watts except from 
day 10 to day 1 1  and not less than 5.5 amp-hrs’. 

In this way the users may emphasize and any number of 
multiple solutions simultaneously. 

PGASlM 

The evolutionary mechanism described above is relatively 
straightforward to implement in software, but since there are 
numerous genetic algorithm frameworks on the market today 
we decided to use one that was already available. After a 
brief survey, we choose PGAPack developed by David 
Levine of the Mathematics and Computer Science Division 
at Argonne National Laboratory [9]. 

PGAPack is a general-purpose, data-structure-neutral, 
parallel genetic algorithm library. It is intended to provide 
most capabilities desired in a genetic algorithm library, in an 
integrated, seamless, and portable manner. The package 
consists of a set of library routines that supply the user 
multiple levels of control over the optimization process. 
The levels vary from default encodings, with simple 
initialization of parameters and single statement execution, 
to the ability to modify all relevant parameters in the 
optimization process at a low level. User written routines 
for evaluation or crossover and mutation can also be inserted 
if necessary. 

Because the calculations of the fitness fimction involve 
computations that can be quite intensive, executing the 
evolutionary computing algorithm on massively parallel 
computers is essential for high-fidelity models. PGA Pack 
supports this by using the Message Passing Interface (MPI) 
for parallel execution on a number of processors. Thus the 
primary advantages that this package had over others is that 
it executed on cluster systems and is open source. 

PGAPack did require some modifications for use in our 
application. Our changes to the package, which we are 
calling PGASIM to distinguish it from the original, were as 
follows: 

1. 
2. 

3.  

4. 

5 .  

Changed the code from C to C++. 
The user provided functions are now methods in 
user defined classes. 
A comprehensive configuration file is driving the 
algorithm instead of the user making explicit calls 
to set the parameters. 
Increased flexibility by creating more place holders 
for custom code. 
Enhance features like multi-criteria optimization 
and hybrid criteria, 

Design Generation Process 

At the beginning of an optimization run the head node reads 
the PGA and Optimization configuration files. This 
information is then used to instantiate the genetic algorithm 
data structures and create the initial population of power 
subsystem designs using randomly generated design 
parameters. 

Once the initial population has been created, the compute 
nodes are configured by the head node to execute the 
simulation. Each compute node reads a reference MMPAT 
configuration and alters it according to the specific 
parameter values for that member. It also reads in the 
activity plan file, which is the same for all individuals, and 
executes the simulation. 

After all of the members of a population have been 
simulated, the results are evaluated by the head node. First a 
check is made to determine if the design encountered any 
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simulation errors that indicate if the design is infeasible, 
such as when the usable state of charge drops to or below 
zero. Then the output results from the simulation are 
examined and the member is put into a slot that satisfies the 
conditional. The ones that do not fit any slot are discarded. 
The members of each slot are then ranked from lowest to 
highest using the ranking criteria. Currently, there are two 
ranking criteria that can be specified by the user, either cost 
or mass. 

The mass of the power subsystem is determined using a 
linear model. The mass of the power subsystem is obtained 
by determining the mass of the solar array and the mass of 
the battery. The solar array mass is determined by 
calculating the total number of solar cells and multiplying 
that value by mass-per-cell constant, Once this value has 
been calculated, the mass of the battery is determined by 

we would use a more idealized formulation phase activity 
plan for the optimization, but for a better comparison to the 
design, we used an actual activity plan from mission 
operations for both test cases. While this provided a good 
basis for comparison it also caused some problems because 
missions will occasionally violate their own flight rules. 
Because of this, we needed to mask out times when this 
occurred. 

The optimization was run on two separate clusters to test 
system performance. The first is a Dell distributed memory 
parallel processor system with 3.2 GHz Intel Pentium 4 
Xeon processors. The second is a Beowulf cluster with 450 
MHz Intel processors. This section describes the tests cases 
and the results. 

MER Surface Mission Test Case 
multiplying the battery’s nameplate capacity by the mass- 
per-watt-hours constant. The sum of these two masses, 
determined the total mass of the power subsystem. 

MER Spirit Rover was used for the surface mission test 
case. The rover was placed in its actual location of 14.95 
degrees south latitude and given an actual 90 Sol activity 
plan from mission operations. This corresponds to the 
original planned length of surface operations of MER-A at 
the Gusev Crater landing site. The design parameters that we 
were interested in generating and their MER values 
included: 

A similar model is used to determine the cost of the power 
subsystem. The cost of the solar array is calculated by 
multiplying the total number of cells with by a cost-per-cell 
constant; the cost of the battery, calculated by multiplying 
the battery’s nameplate capacity by a cost-per-watt-hours 
constant. Total Number of Solar Array Strings: 30 

Total Number of Solar Cells: 501 
Battery Technology: Li-Ion 
Battery Nameplate Capacity: 20.0 amp-hrs 
Bus Control Method: Shunt Limiter 

When the entire population has been slotted and ranked, the 
head node collects the simulation results from the compute 
nodes and checks the stopping condition to decide whether 
the process should continue. If the stopping condition has 
been met, a report is generated containing the design 
parameters of the best population members. Otherwise the 
head node generates a new population. 

For this optimization the following intervals were used for 
each of the variable design parameters: 

Number of Strings : 1 to 40 
Number of Cells per String : 1 to 40 
Nameplate Capacity in amp: 1 to 30 

The top members (lowest cost or mass) are selected to 
continue to the next generation so as not to lose the best 
candidates. The number of elites that are preserved for the 
next generation is calculated by subtracting the population 
replacement size fiom the population size. No duplicates are 
allowed in this elite survival list so if the same member 

The following cost and mass values were used and remained 
fixed throughout the analysis: 

exists at the top of another slot it is ignored and the next best 
candidate is selected. The rest of the replacement population 
is generated using a tournament operator to select parents 
and creating children by varying the parent’s design 
parameters with crossover and mutation. After the new 
population has been generated, the cycle continues. 

Solar cell cost: $0.832k 
Solar cell mass: 0.01 kg per cell 
Battery cost: $6.75k/amp-hr 
Battery mass: 0.01667 kg/watt-hr 

Using our system linear models to compute the total mass and 
cost of the Spirit configuration, we derived the following 
values: 

6. TEST CASES 
Mass of the SA & Battery: 5.29 kg 
Cost ofthe SA & Battery: $551.83k Two different mission scenarios were selected to test this 

automated design system, the MER surface phase and Deep 
Impact cruise phase. The intent was to test the system using 
different phases on different missions and compare the 
generated solutions to the actual mission design. Normally 

Since this was a surface mission only the energy margin 
(EM) and usable SOC (USOC) flight rules were used. The 
following slots were defined as: 
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Slot 1 : EM > 75 watt-hrs AND USOC > 5.5 amp-hrs 
Slot 2: EM > 0 watt-hrs AND USOC > 5.5 amp-hrs 
Slot 3: EM > 150 watt-hrs AND USOC > 5 .5  amp-hrs 
Slot 4: EM > 75 watt-hrs AND USOC > 10.0 amp-hrs 
Slot 5: EM > 75 watt-hrs AND USOC > 1 .O amp-hrs 
Slot 6: EM > 150 watt-hrs AND USOC > 10.0 amp-hrs 
Slot 6: EM > 0 watt-hrs AND USOC > 1.0 amp-hrs 

Energy Margin (watt-hrs) 

Total Number of Solar Array 
Usable SOC (amp-hrs) 

Time masks, in decimal hours, were defined to account for 
start up and late mission where flight rules were violated to 
add more science collection. 

MER Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 
> 75 > 75 > O  > 150 > 7 5  > 75 > 150 
> 5.5 > 5.5 > 5.5 > 5.5 > 10.0 1.0 > 10.0 
30 

Surface Mission Results 

Mass of SA & Battery (kg) 
Cost of SA & Battery ($k) 

Table 3 and 4 shows the designs generated on the Dell 
cluster after 200 and 400 generations, respectively, The first 
column shows the MER design parameters we were 
concerned with, while the remaining columns show the 
generated design parameters with slot 1 duplicating the 
MER power subsystem flight rules. 

5.28 5.14 4.6 1 5.70 5.14 5.14 5.70 4.61 
551.83 548.22 526.60 593.38 548.22 543.22 593.39 526.60 

The first issue that needed to be addressed was the values of 
evolutionary parameters. Based on our experience we chose 
appropriate mutation and crossover probabilities on a 
population size of 128. Convergence of the design 
parameters using these evolutionary values occurred 
somewhere between 200 and 400 generations. 

Table 3 MER Surface Mission Power Subsystem Designs after 200 Generations 

I 32 I 3 0  I 4 2  I 32 

Slot 7 

I 32 --- 

Table 4 MER Surface Mission Power Subsystem Designs after 400 Generations 



and within 10% of the MER design. The exception was the 
design parameters for the number of strings which was 
larger than the MER design. This is probably because we 
did not use a flight rule or requirement to address the 
distribution of cells on the strings. Introducing a requirement 
for the voltage and/or current at the solar array connector 
would likely fix this problem. 

Using 128 nodes, 400 generations of this 90 day activity 
plan took 7 hours to complete on the small clusters and less 
than one hour on the large cluster using 1000 nodes. 

Deep Impact Cruise Mission Tesi Case 

The Deep Impact mission was used for the cruise mission 
test case. The spacecraft trajectory starts from Earth or 1.0 
Astronomical Units (AU) and travels an ellipse to 1.5 AU 
where it will encounter Comet Tempe1 1. It took 
approximately 8.3 months to traverse this distance. 

The activity plan was from DI operations. During the 
mission there were five trajectory correction maneuvers 
where the solar array edge-on to the Sun. This had the effect 
of forcing the battery to be the sole source of power to the 
spacecraft during this time. 

The design parameters that we were interested in generating 
and their DI values included: 

Total Number of Solar Array Strings: 158 
Total Number of Solar Cells: 2792 
Battery Technology: NiH2 
Battery Nameplate Capacity: 16,OO amp-hrs. 

For this optimization the following intervals were used for 
each of the variable design parameters: 

Number of Strings : 1 to 40 
Number of Cells per String : 1 to 40 
Nameplate Capacity in amp: 1 to 30 

The following cost and mass values were used and remained 
fixed throughout the analysis: 

Solar cell cost: $0.832k 
Solar cell mass: 0.01 kg per cell 
Battery cost: $19.3k/amp-hr 
Battery mass: 0.01667 kg/watt-hr 

Using our system linear models to compute the total mass 
and cost of the DI configuration, we derived the following 
values: 

Mass of the SA & Battery: 28.19 kg 
Cost of the SA & Battery: $236 1.82k 
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Table 5 .  Deep Impact Cruise Mission Power Subsystem Designs after 239 Generations 

(amp-hrs) 
Mass of SA & Battery (kg) 
Cost of SA & Battery ($k) 

28.19 28.81 26.95 27.3 1 32.39 33.96 38.71 
2577.94 2561.58 2410.23 2436.78 2875.87 3041.23 3572.84 

demonstrate human-competitive advantages by generating 
credible design concepts faster that humans are able and 

Since this was a surface mission only the power margin without the need for initial design requiring domain 
flight rules was used. The following flight rules were used: expertise. 

Power Margin: 60 watts 

The following slots were defined: 

Slot 1 : Power Margin > 60 watts 
Slot 2: Power Margin > 0 watts 
Slot 3: Power Margin > 30 watts 
Slot 4: Power Margin > 90 watts 
Slot 5: Power Margin > 120 watts 
Slot 6:  Power Margin > 150 watts 

Time masks, in decimal hours, were defined to account for 
trajectory correction maneuvers and the release of the 
impactor. 

Cruise Mission Results 

Table 5 shows the designs generated on the Dell cluster after 

293 generations. The first column shows the D1 design 
parameters we were concerned with, while the remaining 
columns show the generated design parameters. Slot 1 is 
identical to the DI power subsystem flight rules. 

Using 51 nodes, 293 generations of this 8.3 month activity 
plan took 12 hours to complete on the smalI clusters and less 
than one hour on the large cluster using 1000 nodes.. 

7. SUMMARY OF RESULTS 

Results indicate that credible design concepts for spacecraft 
power sub-systems can be generated in an hour after about 
20,000 MMPAT evaluations. Evolved designs showed 
slightly better cost and mass performance and were 
automatically generated as a trade study in a less than one 
hour. MultipIe diverse designs with different mass, cost, 
performance and risk postures were generated providing 
project management and its funding agencies several 
plausible design concepts to choose from. These results 

8. CONCLUSIONS 

It takes a team of experienced JPL domain experts at least 
two weeks to generate a credible pre-award mission concept 
[lo]. Results obtained using two different mission scenarios 
in different mission phases indicate that credible design 
concepts for a spacecraft power subsystem can be generated 
in an hour using evolutionary computing and a dynamic 
space vehicle power subsystem resource and performance 
simulation in a parallel processing environment. Moreover, 
multiple diverse designs with different mass, cost, 
performance and risk postures can be generated providing 
project management and its hnding agencies several 
plausible design concepts to choose from. The results also 
seem to indicate that the speed of automated design 
generation appears to be driven primarily by the length of 
the mission to be evaluated and speed of the processing 
hardware, rather than the number of design parameters to be 
optimized. 

Of course, several components itre required to achieve good 
results: 

1 .  
2. 
3 .  

System flight rules and/or technical requirements 
Time-ordered list of SIC trajectory and state changes 
A validated system simulation capable of ingesting 
time-ordered events, design parameters and outputting 
relevant system state variables 

4. An optimization strategy 
5. A parallel processing environment 
6 .  A parallel- processing integration environment 

Nevertheless, as promising as the results are there is still 
much work to be done before this system can be used in the 
flight project design process. On the implementation side, 
this approach also needs to be applied to other flight system 
subsystems. Once completed all of the subsystems need to 
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be integrated together to provide more comprehensive 
design solutions. 

In addition, it is likely that more power subsystem design 
parameters such as battery and solar G e l 1  technology will 
need to be optimized. It is important that when such 
variables are added, the simulation model supports the 
tradeoff$ to be made and that a flight rule and/ or technical 
requirement is available that can be checked. 

On the theoretical side, it will be important test the system 
against other missions. Doing this will provide additional 
confidence in the results and allow us to better tune the 
evolution parameters so that solutions are found as 
efficiently as possible. In addition, better non-linear cost and 
mass functions will need to be integrated intn the system. 

Stili this approach appears to offer humancompetitive 
advantages by generating credible design concepts faster 
than humans are able to. Currently early mission concepts 
are created by a few experienced domain experts employing 
worst-case estimates. Auromated design techniques provide 
anyone the ability to rapidly select and size design 
components, without bias, based on the space system’s 
anticipated performance in the simulated environment. 
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