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Abstract-This paper presents a new formulation for space- 
craft inertia estimation from test data. Specifically, the inertia 
estimation problem is formulated as a constrained least squares 
minimization problem with explicit bounds on the inertia 
matrix incorporated as LMIs [linear matrix inequalities). The 
resulting minimization problem is a semidefinite optimization 
that can be solved efficiently with guaranteed convergence to the 
global optimum by readily available algorithms. This method 
is applied to data collected from a robotic testbed consisting of 
a freely rotating body. The results show that the constrained 
least squares approach produces more accurate estimates of 
the inertia matrix than standard unconstrained least squares 
estimation methods. 

I. INTRODUCTION 
This paper presents a new formulation for spacecraft 

inertia estimation from data. The data are the spacecraft 
quaternion and the reaction wheel speeds. Initially, a filtered 
version of the spacecraft attitude dynamics equation of 
motion is used to set up a least squares parameter estimation 
problem. The filtered version of the differentia1 equations 
eliminates numerical differentiation of noisy data to ob- 
tain the angular acceleration of the spacecraft and reaction 
wheels. Then, explicit bounds on the inertia matrix are pre- 
sented and incorporated into the least squares optimization 
problem as LMIs (linear matrix inequalities). The resulting 
minimization problem is a semidefinite optimization problem 
that is solved efficiently with a guaranteed convergence to the 
global optiinum by readily available algorithms [I]. 

This research is motivated by NASA-PL's Formation 
Control Testbed (FCT). FCT is a robotic testbed being 
developed to validate technology for future Autonomous 
Formation Flight missions, such as Terrestrial Planet Finder 
Interferometer [2] and Stellar Imager [3]. Three robots will 
comprise the FCT when completed in 2006. Each robot is 
made up of two bodies: the Translation Platform (TP) and 
the Attitude Platform (AP). See Figure 1. The motion of the 
robot must accurately emulate a spacecraft in deep space, 
The TP emulates spacecraft motion via four air bearings, 
three linear and one spherical. The linear air bearings allow 
the robot to freely translate across the floor and the spherical 
air bearings enables the AP to freely tip, tilt and spin (see 
Figure 2. The spin is unconstrained, physical stops limit tip 
and tiIt to a range of sixty degrees. 

Gravity influences rotation of the AP when the platform 
center-of-gravity (CG) does not coincide with the spheri- 
cal air bearing center-of-rotation (CR). The CG-CR offset 
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Fig. 1. Image of an FCT Robot 

induces a gravitational torque and deteriorates closed loop 
control performance. For this reason, the CG-CR offset must 
be minimized. Additionally, in order io achieve precision 
control of the AP attitude, the AP inertia must be accurately 
known. The estimation and elimination of the CG-CR offset 
and the identification of the AP inertia matnx motivates this 
work. 

Recent works on mass property estimation utilize standard 
least squares and total least squares [4], [5 ] ,  [6] .  These 
methods require large data sets in order to produce accurate 
estimates. The physical constraint on tip and tilt of the AP 
and saturation of the reaction wheels due to CG-CR offset 
result in small data sets. In order to make accurate estimates 
based on these data sets, a new constrained least squares 
approach is developed. 

In the following sections, we first derive the equation of 
motion that is the basis for inertia and CG-CR imbaIance 
estimation. The equation of motion is then reformulated in a 
standard least squares form. To improve estimation accuracy, 
constraints are introduced in the form of LMIs. Next, the 
experimental setup is presented, followed by a discussion on 
data processing. Finally, we estimate the inertia matrix and 



Fig. 2. Illustration of the AP body rotations: Tip, tilt and Spin 

terms o f  the time derivative in a body frame B d f i / d t  as 
follows 

+ w ' X i ? .  
BdI? -- -- 

dt  dt 
Then, the equation of motion for the attitude dynamics of 
AP is 

(2) 
-, 

- + G x  H =1, * d g  
d t  

where 7 is the net external torque applied to AP. Once a 
coordinate frame attached to the body of AP is chosen, 
referred to as the AP body frame, we represent all vectors 
in this frame and (2) becomes 

where i, G B d C / d t  for any vector v' with coordinates given 
by the coIumn vector t~ E Et3. Letting matrix J ,  E 
be the representation of J, and Jj be the representation of 
Jj in the body 

the CG-CR offset using constrained Ieast squares, standard 
least squares [7], and the total least squares methods [8] .  
The comparison of the methods indicates that the constrained 
least squares approach produces significantly more accurate 
inertia estimates with respect to an independent estimate of 
the inertia matrix from a CAD model. 

and defining 

-:I] (4) 
0 

11. SYSTEM MODEL for any vector x E I R ~ ,  (3) can be written as 

M M In this section, we present the equations of motion describ- 
ing the attitude dynamics ofthe Ap with reaction wheels. The J W + W X  J w + C J 3 w 3  = . r - z J 3 L j J ,  

2 relative to CR is given by, 
total angular momentum of the AP with the reaction wheels ( j=l ) 3=1 

where J is the inertia of the system relative to CR give by 

J J ,  - m,S2(r,) + x(Jj - m3S2(r3)). ( 5 )  
M (1) 

G = Jaw' + Fa x (G x maF,,) + 
(Jj(w'+ Gj) + [G x (3 x m35)]) 7 

J, is the AP inertia tensor without wheels relative to its 
center of mass, Jj is the inertia tensor for the jth reaction 
wheel about its center of mass (assumed Eo be coincident 
with its center of rotation), w' is the angular velocity vector 
of the AP relative to an inertial frame, Gj is the angular 
velocity vector of the jth reaction wheel relative to the AP, 
?a is the position vector of the AP relative to the CR, 5 is 
position vector of the jth wheel relative to the CR, mu is 
the mass of the AP and mj is the mass of the jth wheel. 
See Figure 3. The notation 'd l?/dt  denotes an inertial time 
derivative of the angular momentum. It can be expressed in 

j = 1  

In the equation above, it is assumed that the reaction 
wheels rotate around a principal axis of inertia, fij, that is 
assumed to be an axis of symmetry for the reaction wheel 
and fixed in the AP body frame, that is, 

where Ij  E R+ is the corresponding principal moment 
of inertia, wj = llwjIJ for the jth reaction wheel, and by 
symmetry of the wheel 

J3 = O .  17) 
By using (6) and (7), (3) can now be expressed as 

M M 

J ~ + w x  J ~ + c I j ~ j f i j  = ~ - c I j W j f i j .  (8) ( j = 1  ) j = 1  

Because thrusters are not used during inertia identification 
maneuvers, the only external torque is due to the CG-CR 
offset. See Figure 3. The gravitational torque T~ is given by 

where the total m s s  ofthe system is 
M 

m = ma + mi, Fig. 3. 
gravity of the AP and the wheels. CR is the center of rotation. 

Diagram of the AP and Reaction Wheels. CG is the center of 

i=l 



g is the gravity vector expressed in inertial frame, i.e., 
g = [0, 0, -9.80?IT (m/s2), and C(q) is the coordinate 
transformation fiom the inertial to the AP body h r n e  given 
as a function of the quaternion q E R4 describing the 
orientation of the AP frame relative to the inertial frame. 
Summarizing the discussion above and considering the kine- 
matics of the AI' rotation via a quaternion description, we 
have the following differential equations that are the basis 
for inertia and CG-CR imbalance estimation, 

M 

JW + w x Jw + z x C(q)g = [ W j I j f i j  x w - IjWjfi] 
j=1 

1 
(10) 

(1 1) q = -Cl(w)q 2 

where 
z = mr,  

I 0 -w3 w2 w1 
w3 0 -w1 w2 
-w2 Wl 0 wg ' 
-w1 -w2 -w3 0 

n(w)  = 

I - 2(qz $. d )  2(q142 $ q3q4) 2(q3q1 - q2q4) 

2(q3q1 + q2q4) Z(q2q3 - 1 - 2 ( d  f 9;) 
2(q1q2 - q3q4) 1 - 2(91 + qi) Z(q2q3 + 4144) I 

and Y = [Ql, 42;  (73, Y41T. 
Remark I: Note that J and z are the unknown constant 

parameters that will be identified as a part of inertia identifi- 
cation. Here w is obtained fiom the quaternion measured by 
the celestial sensor [9] ,  and w:, are measured by tachometers. 
Numerical differentiation of wj  obtains wj for each reaction 
wheel. 0 

m. ESTIMATION OF INERTIA AND MASS IMBALANCE 

In this section, we derive the equation that leads to the 
least squares parameter estimation problem, Letting 

J?J = [ J11 JZZ J33 J l Z  J13 J23 1' (13) 
the equation describing the dynamics of AP (10) can be 
rewritten as 

[&(;I f S ( w ) Q ( w )  S(C(dg)I 4 = 
(14) N xjxl /w3-rj;2, x w - rjc+ijl , 

where 

and 
N 

v(t) = C W j ( t ) I j i i j  x w - I j W j ( t ) f i j ,  

jL1 

When a sampled data set i s  provided for w, GI, q, and wj, 
for j = 1,. . . , M ,  equation (17) directly implies a least 
squares problem to estimate 4. However, AP sensors directly 
measure s w ,  q and wj from which w and IjW& must 
be derived. Since w j  and Ij is known very accurately, the 
above discussion implies that W and wj must be obtained 
numerically when (17) is used to formulation the least 
squares estimation problem.' 

To do so, we use a filtered version of (14) to avoid 
numerical differentiation to obtain W and wj. The second- 
order causal filter, 

w: F ( s )  = I 0 < wnl 0 < t I 1, (18) 
s2 + 2tw, + 

applied to (1 4) gives rise to 

j=1 

where 

.;lf(t) = ?{'+) 1 

W f , j ( t )  = F{Wj)(t), j = 1,.  . . , M ,  
P f , j ( t )  = FTlw,w)(t) I j = 1,. . . ,  M ,  
+At> = F'(S(w)Q(cJ)}(t) 
r l f ( t )  = FT(C(q(t))g)(t) I 

and F{.} is the filtering operatorwith transfer function F ( s ) ,  
F{,} is the filtering operator with transfer function F ( s )  = 
sF(s)  and 6 ( t )  is the impulse response of F(s) .  Note that 
we use the fact that S and Q are linear operators in the 
derivation of 19. The filtered version of the dynamics (14) 
is then written in the following compact form, 

G(t )  4 = g( t )  7 (20) 

where 

G(t)  = 1 Q ( G f ( t I - W I 4 0 ) )  + $ ~ f ( t )  S ( V ( ~ ) )  1 
and 

N 

g ( t )  = Ij [% x P f , j ( t )  - Wf, ( t )  + W ) W j ( O ) ]  . 
j=l 

The experimental data is obtained at discrete time in- 
stances, to ,  tl, . . . , t N ,  that is, the data is sampled. Therefore 
(20) describes an equality at each sampled time instance tk .  
Consequently, we have the following set of equalities 

G(tk) $ = g ( t k ) ,  k = 0, I, . . . , N .  (21) 

'Note that, if the external torque due to gravity does not exist, one can use 
conservation of momentum equation rather than (2) to obtain an equation 
that does not contain the derivatives of the angular rates [ 5 ] .  This is not 
applicable in our case. 



Additionally, the filtering required to obtain G ( t k )  and g ( t k )  
is performed digitally by using a discrete approximation of 
the filter (18). That is, for any signal v( t )  

F { W } ( t k )  = Fd(W0, --., V N } k ,  k = 0,. . . , N ,  

where 3, is the filtering operator for the discrete approxi- 
mation of F, and Fd(v0, ..., V N } ~  is the value of the filtered 
signal at kth sample obtained by filtering the data "0, . , . , V N .  

Then, the least squares problem parameter estimation is given 
by 

A 4 = b ,  (22)  

where A E lR3(N'1)x9 and b E lR3(N+1) are given by 

G(t0) d t o )  

A =  1 G(:) 1 , b =  [ '(ti) 1 . 
G(tN 1 g @ N )  

At this point one can use standard least squares techniques 
[7] to obtain a solution fOr 4. However, such an approach 
fails to capture known constraints on the estimated param- 
eters. One obvious constraint is J = JT > 0, that is, the 
inertia matrix is symmetric positive definite. Indeed more 
specific bounds are generally known about the inertia matrix, 
such as 

a I <  J < p I ,  (23) 

where a and p are positive scalars bounding the maximum 
and minimum eigenvalues of J .  Then a general constrained 
least squares problem can be written as 

minb(A4 - b)TW(A# - b)  subject to 

I 4iE 501 (24) 

ci 5 & 5 di , i = 1,. . . , 9  

where ci and di, a = 1,. . . ,9,  bound the individual com- 
ponents of 4 = [&, . . . , &IT, W = WT > 0 is a weight 
matrix, and PI . . . , p6 are symmetric matrices that are used 
to impose minimum and maximum eigenvalue constraints on 
the inertia matrix. They are given by 

.-[" 1 0 0  0 O] . ,= [O 0 0 0  1 ,] . ,=[0 0 0 0  0 .I, 
0 0 0  0 0 0  0 0 1  

0.8 

0 1 0  0 0 1  0 0 0  

0 0 0  1 0 0  0 1 0  

Equation (24) introduces LMI constraints and is a semidef- 
inite programming problem [IO], [ 1 11 that can be solved 
very efficiently with guaranteed convergence to the unique 
optimum solution by existing algorithms [ 11, Additional 
constraints can be accommodated in this framework to 
further improve the inertia estimate with small data sets. For 
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Fig. 4. Time History of the AP Attitude 

example, bound quantifying the diagnoal dominance of the 
inertia matrix and be added: 

-74141 5 $4 _< ?'4141, 
-74242 5 $4 5 ?'42($2, 

-75141 5 #5 5 "isl#l, 

-75343 I 4 5  5 7 5 3 4 3 ,  

-"is242 5 4 6  5 'Y6242, 

-76343 5 $6 5 76343,  

where 741, 7427 7 5 1 ,  7 5 2 ,  762, 7 6 3  are positive scalars. 

rv. DATA COLLECTION AND POSTPROCESSING 

To compare standard least squares, total least squares, and 
constrained least squares, we acquired test data from the 
FCT, The FCT avionics closely emulate those of a spacecraft. 
Torques produced by three orthogonally mounted reaction 
wheels and sixteen cold gas thrusters rotate the AP. Optical 
gyroscopes and an in-house developed celestial sensor (CS) 
[9] measure the rotation of the A€? Using closed loop control 
with the gyroscopes and reaction wheels, the AP was rotated 
without violating the physical constraints imposed on tip and 
tilt. The controller oscillated the platform 115 degrees in tip 
and tilt and 1t20 degrees in spin. As part of a frequency 
sweep, the period of the oscillations continuously decreased 
at a rate 11.25 seconds per minute. Figure 4 illustrates the 
rotation as measured by the CS. Here, a, and y are tip, 
tilt and spin, respectively. 

The filtered estimation approach of (20) requires measure- 
ment of the AP angular velocity and the reaction wheels 
speeds relative to the AP body. Wheel speeds are di- 
rectly measured by tachometers. Rotation of the platform 
is measured by two devices: the CS and gyroscopes. The 
gyroscopes of the FCT run in accumulated angle mode 
producing measurements as integrated angles. The celestial 
senor measures the AP attitude in the form of a quaternion. 



Processing either the integrated angles or the quaternions 
is necessary to resolve the body angular velocity. Both 
process entail comparable amounts of work and complexity 
[12]. Here, we derive the AP angular velocity from the 
measured quaternions, because the CS measurement fiame 
defines the AP body frame and CS noise is stationary. As 
part of preprocessing the data, the quaternion time history 
is smoothed to reduce noise via methods presented in [IO]. 
From the smoothed quaternion data set, we determine the 
angular velocity of the AP by methods found in [12]. 

v. RESULTS FROM EXPERIMENTAL DATA 
Standard least squares, total least squares and constrained 

least squares are applied to the derived body angular velocity 
and the measured reaction wheel spin rates to estimate the 
AP inertia and mass imbalance. The estimates of the AP 
inertia and CG-CR offset are: 

5.7928 -0.7568 -0.9744 
-0.7568 10.8692 0.7670 
-0.9744 0.7670 15.3069 

5.8399 -0.7533 -0.9346 
-0.7533 10.8726 0.7733 
-0.9346 0.7733 15.3611 

7.5691 -0.5298 -0.0300 
-0.5298 11.6034 0.8122 
-0.0300 0.8122 16.0833 

Jh = 

[ Jtls = 

Jcls = 

kg . m2 

kg , m2 

kg . m2 

zzS = [ -0.5515 -0.6313 0.4282 1’ x kg .  m 

&is = [ -0.5515 -0.6313 0.4283 1’ x kg . m 

zcls = [ -0.6071 -0.6786 0.0413 1’ x lop4 kg . m. 

An independent estimate of the AP inertia relative to the CR 
exists as the result of a comprehensive SolidWorks model. 
This estimate is 

I 8.0105 -0.2330 -0.5063 
Js, = -0.2330 11.4476 0.0163 kg. m2. 

From this model, the lower bound on J were chosen to be 

J > [ 0.0 7.5 0 .01  k ’ m 2  

Using the SolidWorks estimate as the basis for comparison, 
the relative errors of the least squares estimates are defined 
as: 

els = 11J~s - Jsw///IIJswII = 0.2036, 

eels IIJcas - Jswll/IIJswl/ = 0.1259. 

-0.5063 0.0163 14.9564 

7.5 0.0 0.0 

0.0 0.0 7.5 

I 

etls = IIJtls - J8WJ~/llJSWIl = 0.1988, 

VI. CONCLUSIONS 
A constrained least squares approach based on LMIs has 

been developed. This approach can incorporate the posi- 
tive definiteness of the inertia matrix directly. Furthermore, 
additional bounds on the inertia matrix can also be con- 
sidered. These bounds are particularly useful in obtaining 

more accurate estimates of the inertia matrix when there 
is a limited amount of angular motion allowed (in terms 
of angular velocities and displacements) as is the case for 
the FCT robots. This technique, along with standard Ieast 
squares and total least squares, was then applied to estimate 
inertia matrix of the FCT robot AP using experimental data. 
Of the three estimates, the estimate using the technique 
developed here most closely agrees with the pre-existing, 
independently-derived estimate of the AP inertia. 

Although the characteristics of the FCT robot necessitated 
this work, the algorithm developed here can produce more 
accurate estimates of the inertia matrix than standard least 
squares with smaller data sets. Consequently, it will be useful 
in other engineering applications beyond FCT. In particular, 
this method can provide accurate inertia estimates for flight 
missions with a minimal consumption of fuel and time. 
Additionally, the constrained least squares approach is a 
natural extension of the standard least squares methods for 
inertia estimation via the inclusion of the matrix constraints 
as LMIs. 
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