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ABSTRACT 
Interacting agents that interleave planning and execution must reach 
consensus on their commitments to each other. In domains where 
agents have varying degrees of interaction and different constraints 
on communication and computation, agents will require different 
coordination protocols in order to efficiently reach consensus in 
real time. We briefly describe a largely unexplored class of real- 
time, distributed planning problems (inspired by interacting space- 
craft missions), new challenges they pose, and a general approach 
to solving the problems. These problems involve self-interested 
agents that have infrequent communication but collaborate on joint 
activities. We describe a Shared Activity Coordination (SHAC) 
framework that provides a decentralized algorithm for negotiating 
the scheduling of shared activities over the lifetimes of separate 
missions, a soft, real-time approach to reaching consensus during 
execution with limited communication, and a foundation for cus- 
tomizing protocols for negotiating planner interactions. We apply 
SHAC to a realistic simulation of interacting Mars missions and 
illustrate the simplicity of protocol development. 

1. INTRODUCTION 
When interleaving planning and execution, an agent adjusts its 

planned activities as it gathers information about the environment 
and encounters unexpected events, and interacting agents coordi- 
nate these adjustments to manage commitments with each other. 
Demand for this kind of autonomous agent technology is grow- 
ing for space applications. Autonomous spacecraft promise new 
capabilities and cost improvements in exploring the solar system. 
Spacecraft (and rovers) that explore other planets have intermittent, 
delayed communication with Earth, requiring that they be able to 
manage their resources and operate in for long periods in isola- 
tion. The common approach to autonomous decision making is to 
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place integrated image analysis, planning, and execution systems 
on-board the spacecraft. 

In addition, there is a growing trend toward multi-spacecraft mis- 
sions. Over forty multi-spacecraft missions have been proposed, 
including formation flying teams and over 16 planned missions to 
Mars in the next decade. These spacecraft will coordinate mea- 
surements, share images, and route data to and form Earth. Sep- 
arate missions, such as those to Mars have their own budgets, ex- 
periments, and operations teams. As such, the spacecraft represent 
self-interested entities that benefit from collaborative interactions. 

But, even a single spacecraft has multiple science instruments 
representing different goals of different scientists, and different op- 
erations groups will have different areas of expertise over differ- 
ent subsystems for control. These different groups negotiate over 
mission plans in the same way that different Mars missions must 
collaborate over spacecraft interactions. Whether this negotiation 
is done on-board or on Earth, there is a distributed operations plan- 
ning problem that benefits from. automation. Both also have real- 
time aspects. Onboard systems must plan safely over near- and 
long-term horizons, and ground systems must also replan based on 
changing contexts in daily, weekly, and lifelong mission exercises. 
Ground planning also suffers from communication Constraints. Sci- 
entists from different universities or opposite sides of the globe will 
intermittently provide inputs and respond on an irregular basis. A 
collaborationhegotiation system must be built around communica- 
tion constraints to meet hard deadlines for coming to consensus on 
consistent operations plans. 

In this work, we will briefly characterize this general problem in 
terms of activity interaction types and communication constraints 
and discuss its challenges. The field of multiagent planning has 
largely focused on fully cooperative planning and execution [4, 5, 
13, 8, 21. Market-based agent systems address near-term resource 
negotiation but have rarely addressed how near-term decisions af- 
fect longer-term goals. Multiagent systems built for Robocup Soc- 
cer competitions mainly address collaborative multiagent execution 
in an adversarial environment and have limited planning capabili- 
ties. These approaches do not adequately address real-time plan- 
ning for self-interested agents. 

This paper presents a framework for Shared Activity Coordi- 
nation (SHAC). SHAC consists of an algorithm for continually 
coordinating agents and a foundation for rapidly designing and 
implementing coordination protocols based on a model of shared 
activities. In the same fashion that a real-time planning system 
must commit to actions to pass to an execution system, a real- 
time coordination system must additionally establish consensus on 
shared activities before they are executed based on communica- 
tion constraints. Our ultimate goal is to create interacting agents 
that autonomously adjust their coordination protocols with respect 
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to unexpected events and changes in communication or computa- 
tion constraints so that the agents can most efficiently achieve their 

First we characterize a class real-time, self-interested multiagent 
planning problem that exists for space Then we describe the shared 
activity model, the SHAC algorithm, and its interface to the plan- 
ner. Then we specify some generic roles and protocols using the 
SHAC framework that build on prior coordination mechanisms. 
Then we describe how our current implementation of SHAC is used 
to coordinate the communication of two rovers and an orbiter in a 
simulated Mars scenario. We follow with future research needs re- 
vealed in this scenario and comparisons to related work. 

goals. 

2. CONTINUAL COORDINATION PROBLEM 
As mentioned before, agents that interleave planning and exe- 

cution must commit near-term activities to the execution system 
while receiving feedback in the form of state updates and activ- 
ity performance. One such continual planning system, CASPER 
(Continuous Activity Scheduling Planning Execution and Replan- 
ning) identifies the period when the planner commits activities to 
the execution as a commit window [l]. Distributed planning agents 
must additionally reach consensus on team interactions before exe- 
cution. As explored in the team plan model given by TEAMCORE 
[13, 121 formalizations of Shared Plans [8], and coordination inter- 
actions of TAEMS [4], these interactions could include 

use and replenishment of shared resources, 

0 joint actions for achieving a mutually beneficial subgoal, 

0 choice of methods for achieving a team subgoal, 

participation and role assignments in a joint plan, and 

0 proposals and commitments of the above. 

3. SHAC 
However, reaching consensus on these interactions is compli- 

cated when the agents can only communicate intermittently. De- 
pending on the number of agents involved in a particular interac- 
tion, consensus may need to be established far in advance so that 
negotiations can be propagated far in advance of execution. Thus, 
for any particular set of interactions, a consensus window, within 
which the agents must limit negotiation and establish agreement, 
should be defined. For example, if three agents must negotiate a 
joint action in advance of execution but can only communicate pair- 
wise in disjoint time windows, a consensus window must extend at 
least to cover windows connecting all three agents. Inside the con- 
sensus window, a simple protocol eliminating negotiation (such as 
all agree or reject) must be employed to guarantee consensus. In- 
teractions beyond the consensus window can be negotiated. 

It is an open problem how consensus windows should be de- 
fined based on interaction types and communication opportunities. 
While thls paper does not solve this problem, it describes an im- 
plemented infrastructure and testbed for developing and evaluating 
alternative consensus windows and protocols. 

Our approach, called Shared Activity Coordination (SHAC), pro- 
vides a general algorithm for interleaving planning and the ex- 
change of plan information based on shared activities. Agents co- 
ordinate their plans by establishing consensus on the parameters 
of shared activities. Figure 1 illustrates this approach where three 
agents share one activity and two share another. The constraints 
denote equality requirements between shared activity parameters in 
different agents. The left vertical box over each planner’s schedule 

represents a commit window that moves along with the current time. 
A consensus window is shown to the right of the commit window, 
within which consensus must be quickly established before com- 
mitting. Since consensus is hard to maintain when all agents can 
modify a shared activity’s parameters at the same time, agents must 
participate in different coordination roles that specify which agent 
has control of the activity. As shown in the figure, SHAC interacts 
with the planning and execution by propagating changes to the ac- 
tivities, including their parameters and constraints on the values of 
those parameters. 

SHAC continually coordinates by interfacing to a combined plan- 
ning/execution system that responds to failures and state updates 
from the execution system. Our implementation interfaces with 
one such continual planning system, CASPER, mentioned in the 
previous section. Instead of batch-planning in episodes, CASPER 
continually adapts near and long-term activities while re-projecting 
state and resource profiles based on updates from sensors. 

3.1 Shared Activities 
The model of a shared activity is meant to capture the infor- 

mation that agents must share, including control mechanisms for 
changing that information. A shared activity is a tuple (parameters, 
agent roles, protocols, decomposition, constraints). The pa- 
rameters are the shared variables and current values over which 
agents must reach consensus by the time the activity executes. The 
agent roles determine the local activity of each agent corresponding 
to the joint action. To provide flexible coordination relationships, 
the role activities of the shared activity can have different condi- 
tions and effects as specified by the local planning model. The 
shared parameters map to local parameters in the role activity. 

For example, a shared data communication activity can map to 
a receive role activity for one agent and a send role activity 
for another. Shared parameters could specify the start time, dura- 
tion, transfer rate, and data size of the activity. The data size is 
depleted from the sender’s memory resource but added to the re- 
ceiver’s memory. The agents could have separate power usages 
for transmitting and receiving. In this case the resources are not 
shared. Another shared activity could be the use of a common 
transport resource. Although one agent in an active transit role 
actually changes position, other agents in passive roles have lo- 
cal activities that only reserve the transport resource. Figure 3.1 
shows an instance of this shared activity where an orbiter receives 
communication from a rover. 

Protocols are the mechanisms assigned to each agent (or role) 
that allow the agents to change constraints on the shared activity, 
the set of agents assigned to the activity, and their roles. In Fig- 
ure 3.1, both the orbiter and rover use an argumentation protocol 
to negotiate the scheduling and attributes of the communication. 
Constraints will be described in the next section, and a variety of 
protocols will be defined in the Protocols section. 

The shared decomposition enables agents to select different team 
methods for accomplishing a higher level shared goal. Specifically, 
the decomposition is a set of shared subactivities. The agents can 
choose the decomposition from a pre-specified set of subactivity 
lists. For example, a joint observation among orbiters could de- 
compose into either (measure, process-image, downlink) 
or (measure, downlink). 

3.2 Constraints 
Constraints are created by agents’ protocols to restrict sets of val- 

ues for parameters (parameter constraints) and permissions for ma- 
nipulating the parameters, changing constraints on the parameters, 
and scheduling shared activities (permission constraints). These 
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Figure 1: Activities shared among continual planners 

shared-activity communicate com-id-12 { 
time start-time = 2004-302:09:30:00; / /  date 
int duration = 200; / /  seconds 
int data-size = 25600; / /  25.6 Mbits 
real xmit-rate = 128.0; / /  5.0 Kbps 
int priority = 1; / /  critical 
roles = 

receive by orbiter, 
send by rover; 

receive argumentation, 
send argumentation; 

receive (move, delete, xmit-rate), 
send (delete, data-size, priority); 

rover start-time = ([2004-302:09:30:00, 2004-302:09:38:00], 

protocols = 

permissions = 

parameter-constraints = 

[2004-302:18:30:00, 2004-302:18:38:00]); 
1 

Figure 2: An instance of a shared communication activity between a rover and orbiter 

constraints restrict the privileges (or responsibilities) of agents in 
making coordinated planning decisions. By communicating con- 
straints, protocols can come to agreement on the scheduling of an 
activity without sharing all details of their local plans. 

A parameter constraint is a tuple (agent, parameter, value set )  
The agent denotes who created the constraint. Some protocols dif- 
ferentiate their treatment of constraints based on the agent that cre- 
ated them. For example, the asynchronous weak commitment algo- 
rithm prioritizes agents so that lower-priority agents only conform 
to higher-priority agent constraints [15]. Agents can add to their 
constraints on a parameter, replace constraints, or cancel them. A 
string parameter constraint, for example, can restrict a parameter to 
a specific set of strings. An integer or floating point variable con- 
straint is a set of disjoint ranges of numbers. Scheduling constraints 
can be represented as constraints on a start time integer parameter. 
This is shown in Figure 3.1 where the rover restricts the start time 
of the communication between two eight minute intervals. 

Permission constraints determine how an agent's planner is al- 
lowed to manipulate shared activities. The following permissions 
are currently defined for SHAC: 

0 parameters - change parameter values 

0 move - set start time 

0 duration - change duration of task 

0 delete - remove from plan 

0 choose decomposition - select shared subactivity of an or 

0 add - add to plan' 

0 constrain - send constraints to other agents 

activity 

In the communication example in Figure 3.1, the receiver is al- 
lowed to reschedule (move) the activity, delete it, or change the 
transmission rate. The sender cannot move the activity, but can 
delete it and change the requested size and priority of the data. 

'This permission applies to a class of shared activities (i.e. an 
agent may be permitted to instantiate a shared activity of a par- 
ticular class). 



3.3 Coordination Algorithm 
The purpose of the SHAC algorithm is to negotiate the schedul- 

ing and parameters of shared activities until consensus is reached. 
Figure 3 gives a general specification of the algorithm. SHAC is 
implemented separate from the planner, so steps 1 through 3 are 
handled by the planner through an interface to SHAC. Step 4 in- 
vokes the protocols that potentially make changes to refocus coor- 
dination on resolving shared activity conflicts and improving plan 
utility. SHAC sends modifications of shared activities and con- 
straints to sharing agents in step 5. In step 6, shared activities 
and constraints are updated based on changes received from other 
agents. 

Ignoring coordination, a continuous planner must determine when 
it is appropriate to release activities to the execution system. In 
some cases, an activity involved in a conflict may either be re- 
leased (requiring the planner to recover from potential failures) or 
postponed (to allow the planner to recover before a failure occurs). 
CASPER keeps a commit window (an interval between the current 
time and some point in the near future) within which activities can- 
not be modified and passes these activities to the execution system. 

This interaction with the execution system becomes more com- 
plicated when agents share tasks. SHAC must make sure that when 
a shared activity is released, all agents release it while in consen- 
sus on the start time and other parameters of the task. Ideally 
the agents should establish consensus before the commit window. 
SHAC avoids changes in the commit window by keeping a con- 
sensus window that extends from the commit window forward by 
some period specific for the activity. As time moves forward, the 
windows extend forward. When a shared activity moves into the 
consensus window, the agents switch to the simple consensus pro- 
tocol to try and reach consensus before the activity moves into the 
commit window 

4. PROTOCOLS 
In general, protocols determine when to communicate, what to 

communicate, and how to process received communication. Dur- 
ing each iteration of the loop of the coordination algorithm (Figure 
3), the protocol determines what to communicate and how to pro- 
cess communication. A protocol is defined by how it implements 
the following procedures to be called during step 4 of the SHAC co- 
ordination algorithm for the shared activity to which it is assigned: 

1. modify permissions of the sharing agents 

2. modify locally generated parameter constraints 

3. add/delete agents sharing the activity 

4. change roles of sharing agents 

The default protocol, representing a base class from which other 
protocols inherit, does nothing for these methods. However, even 
with this passive protocol, the SHAC algorithm still provides sev- 
eral capabilities: 

joint intention A shared activity by itself represents a joint inten- 
tion among the agents that share it. 

mutual belief Parameters or state assertions of shared activities 
can be updated by sharing agents to establish consensus over 
shared information. 

resource sharing Sharing agents can have identical constraints on 
shared states or resources. 

active/passive roles Some sharing agents can have active roles with 
execution primitives while others have passive roles without 
execution primitives. 

masterlslave roles A master agent can have permission to sched- 
ule/modify an activity that a slave (which has no permis- 
sions) must plan around. 

The following sections describe some subclasses of this abstract 
protocol, demonstrating capabilities that each protocol method can 
provide. 

4.1 Argumentation 
Argumentation is a technique for negotiating joint beliefs or in- 

tentions [9]. Commonly, one agent makes a proposal to others with 
justifications. The others evaluate the argument and either accept 
it or counter-propose with added justifications. This technique has 
been applied to teamwork negotiation research to form teams, reor- 
ganize teams, and resolve conflicts over members’ beliefs [14]. It 
can also be used to establish consensus on shared activities. 

A shared activity and associated parameter values are the pro- 
posal or counterproposal. Justifications are given as parameter con- 
straints. A proposal is a change to a shared activity that does not 
violate any parameter constraints. A counterproposal may violate 
constraints. Protocol method 2 must be implemented to provide 
the parameter constraint justifications for proposals and counter- 
proposals. In order to avoid race conditions, protocol method 1 
regulates permissions. 

Argumentation method 1 

if this agent sent the most recent proposal/counterproposal 

- if planner modified shared activity 
* remove self’s modification permissions 

else 

- give self modification permissions (e.g. move and delete) 

Argumentation method 2 

0 if planner modified shared activity 

- generate parameter constraints describing locally con- 
sistent values 

As an example, one agent can propose an activity with a particu- 
lar start time and add justifications in the form of all intervals within 
which the shared activity can be locally scheduled. Other agents 
can replan to accommodate the proposal and counter-propose with 
their own interval restrictions if replanning cannot accommodate 
others’ constraints. If the agents cannot establish consensus before 
the consensus window, a higher ranking agent can mandate a time 
that benefits most of the agents. Of course, there are many varia- 
tions on this example. Agents may be restricted because they are 
slaves or do not have constraint permissions to counter-propose. 
4.2 Delegation 

Delegation is a mechanism where an agent in a passive delegator 
role assigns and reassigns activities to different subsets of agents in 
active subordinate roles. The delegator and subordinate protocols 
only need 

Delegator method 3 

if agent roles empty 



Given: a plan with multiple activities including a set of sharedactivities with constraints and a projection of plan into the 
future. 

1. Revise projection using the currently perceived state and any newly added goal activities. 

2. Alter plan and projection while honoring constraints. 

3. Release relevant near-term activities of plan to the real-time execution system 

4. For each shared activity in sharedactivities, 

0 if outside consensus window, 
- apply each associated protocol to modify the shared activity; 

else 
- apply simple consensus protocol. 

5.  Communicate changes in sharedactivities. 

6. Update shared-activities based on received communications. 

7. Go to 1. 

Figure 3: Shared activity coordination algorithm 

- choose an agent to whom to delegate the activity 
- add (agent, subordinate) to agent roles 

Subordinate method 3 

0 if cannot resolve conflicts/threats involving activity 

- remove self from agent roles 

5. APPLICATION TO MARS SCENARIO 
Now we describe how SHAC is applied to a simulated three- 

day scenario involving two Mars Exploration Rovers (MERs), the 
Mars Odyssey orbiter, Mars Global Surveyor, and the Mars Ex- 
press orbiter. The delegation protocol described previously was 
subclassed for the rovers to assign and reassign the routing of im- 
ages to the orbiters based on how quickly they can deliver the data 
to Earth. Different mastedslave and activdpassive roles are defined 
using permission constraints for the shared activities to implement 
a basic protocol for coordinating communication to and from Earth. 
Interactions over communication (once delegated) are between two 
agents, so the consensus window is defined to cover communica- 
tion activities spanning two communication opportunities into the 
future. Once in the consensus window, the rover cannot redele- 
gate activities unless the orbiter cannot resolve conflicts and must 
decommit. We intend to experiment with other protocols and con- 
sensus window definitions in this domain in our future work. 

The MERs (MER A and MER B) and the orbiters can commu- 
nicate with Earth directly, but the MERs can optionally route data 
through the orbiters, which communicate with Earth at a higher 
bandwidth. The rovers need daily communication with ground op- 
erations to receive new goals. The rovers will often fail to traverse 
to a new target location and cannot proceed until new instructions 
come from ground operations. In this scenario both MERs must ne- 
gotiate with the assigned orbiter to determine how to most quickly 
get a response from ground after sending an image of the surround- 
ing area. 

Each MER has a communication state shared with each orbiter 
that tracks when the image is generated, when it gets to Earth, 
and when the response from ground operations arrives to the rover. 

Shared activities for changing the state are shown for different rout- 
ing options in Figure 4. The rover’s activity for generating an im- 
age from its panoramic camera changes the state to request to 
communicate its need to downlink and receive an uplink. Activities 
for sending the image to Earth (either directly or through Odyssey), 
change the state to await for uplink state to indicate that the 
rover will then be waiting for the uplink. Ground operations needs 
a period of time to generate new commands for the uplink, so if 
the uplink is received by Odyssey, the state changes to received 
to indicate that now the rover can get the uplink from Odyssey. 
Once the rover receives the uplink, the state changes back to the 
normal no pending request state. Rover tasks (such as a 
traverse) need the uplinked data before executing, so it places a lo- 
cal constraint that shared state be no pending request dur- 
ing its scheduled interval. There are no shared resources although 
communication requests from a MER have effects on many local 
resources of both the MER and the orbiter. All of the shared ac- 
tivities have active master and passive slave roles. The MERs and 
obiters both take the master role for activities labeled for them in 
Figure 4. 

CASPER planners for each of the MERs and orbiters first build 
their three-day plans separately to optimize the timely delivery of 
priority weighted science data, resolving any local constraints on 
memory, power, battery energy, etc. The three-day schedules con- 
stitute over 900 tasks for each MER and over 1300 for each of the 
orbiters with 30 statdresource variables for each MER and 22 for 
the orbiters. Planning is slowed by a factor of 440 to account for 
differences between a desktop workstation and a radiation-hardened 
flight processor. Communication for coordination is restricted to 
times when the orbiters pass overhead. With the exception of Mars 
Express, the orbiters pass overhead once every eight hours. Be- 
cause of its irregular orbit, Mars Express sees the rovers only once 
every 96 hours. Because of this, we actually used no consensus 
window for communication with Mars Express, putting pressure 
on the planners to resolve conflicts during image transmission. 

When coordination begins, the planners send their communica- 
tion requests to the other planners while optimizing their plans. 
Before these updates are received, the initial views of the shared 
uplink status are shown in Figure 5. The MERs begin with con- 
flicts with their traverse tasks because the uplink has not yet been 
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Figure 4: DownlinWuplink states for a rover 

received from Earth. The coordination algorithm commands the 
planners to repetitively process shared task updates, replan to re- 
solve conflicts by recomputing the shared state and modifying sci- 
entific measurement operations to adjust for the increased power 
and memory needs, and send task updates. After a minute and a 
half, MER A, B, and Odyssey agree on routing the downlink and 
uplink through Odyssey to get the uplinked commands in time for 
the traversal on different days. he resulting shared state is shown at 
the bottom of Figure 5. The planners reach consensus that coordi- 
nation is complete and sleep while waiting for task updates. 

Among other failed communication attempts, we triggered an 
anomaly in MER A's plan causing it to cancel its first day's tasks 
and shift the entire schedule forward a day. Before sending the 
updated shared tasks, replanning was issued to resolve local con- 
straints to avoid propagating inconsistent state information to Odyssey. 
All conflicts were resolved in a few seconds except the traverse 
conflicts with a w a i t  state. Then MER A sends a task update to 
restart coordination. Coordination completes in less than a minute 
with data again being routed through Odyssey. 

While we have only experimented with simple protocols, this 
application of SHAC to the Mars scenario shows how planners can 
coordinate during execution while making minimal concessions to 
ideal plans and responding to unexpected events. In the next sec- 
tion, we discuss how SHAC builds on related work and discuss new 
research challenges for decentralized, coordinated planning. 

6. DISCUSSION AND RELATED WORK 
Conflicts among a group of agents can be avoided by reducing 

or eliminating interactions by localizing plan effects to particular 
agents [lo], and by merging the individual plans of agents by in- 
troducing synchronization actions [7]. In fact, planning and merg- 
ing can be interleaved [6]. Earlier work studied interleaved plan- 
ning and merging and decomposition in a distributed version of 
the NOAH planner [3] that focused on distributed problem solving. 
More recent research builds on these techniques by formalizing and 
reasoning about the plans of multiple agents at multiple levels of 
abstraction to localize interactions and prune unfruitful spaces dur- 
ing the search for coordinated global plans [Z]. 

DSIPE [5] employs a centralized plan merging strategy for dis- 
tributed planners for collaborative problem solving using human 
decision support. Like our approach, local and global views of 
planning problem help the planners coordinate the elaboration and 
repair of their plans. DSIPE provides insight into human involve- 
ment in the planning process as well as automatic information fil- 
tering for isolating necessary information to share. While our ap- 
proach relies on the domain modeler to specify up front what infor- 
mation will be shared, SHAC supports a fully decentralized frame- 
work and focuses on interleaved coordination and execution. 

In many ways this work is following the Generalized Partial 
Global Planning approach to using a mix of coordination protocols 
tailored for the domain [4]. SHAC offers an altemative framework 
for separating implementation of these mechanisms from the plan- 
ning algorithms employed by specific agents. Unlike GPGP, SHAC 
provides a modular framework for combining lower-level mecha- 
nisms to create higher-level roles and protocols. Our future work 
will build on GPGP's evaluations of mechanism variations to bet- 
ter understand how agents should coordinate for domains varying 
in agent interaction, communication constraints, and computation 
limitations. 

Finally, TEAMCORE provides a robust framework for devel- 
oping and executing team plans 113, 121. This work also offers 
a decision-theoretic approach to reducing communication within 
a collaborative framework. Research is needed to investigate the 
integration of coordinated planning with robust coordinated execu- 
tion. 

An assumption commonly made in multiagent research is that 
agents will be able to communicate at all times reliably. In the 
Mars scenario, the spacecraft communicate with each other in vary- 
ing time windows and frequencies, and the two MERs can never 
directly talk to each other. Establishing consensus on beliefs and 
intentions is impossible without certain communication guarantees 
[ 111. Understanding the communication patterns that make consen- 
sus possible and the overhead for establishing consensus is critical 
for multiagent research. 

7. CONCLUSION 
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Figure 5: Downlinkhplink shared state for MER A. From top to bottom, Odyssey's initial view, MER A's initial view, and the 
common view after Coordination. 

We have introduced shared activity coordination as an approach 
to designing role-based coordination mechanisms for planning agents. 
SHAC provides several coordination capabilities upon which we 
have specified a few higher-level coordination protocols that exer- 
cise different aspects of the SHAC model. We have also described 
an algorithm for continually coordinating planning agents during 
execution using these protocols. While our future work is aimed 
at evaluating the benefits of different protocols for different classes 
of multiagent domains, we validate our approach in coordinating 
three simulated spacecraft in the presence of an unexpected event. 
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