
Continual Coordination through Shared Activities

Bradley J. Clement and Anthony C. Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91 109-8099
{bclement, barrett} @aig.jpl.nasa.gov

ABSTRACT
Interacting agents that interleave planning and execution must reach
consensus on their commitments to each other. In domains where
agents have varying degrees of interaction and different constraints
on communication and computation, agents will require different
coordination protocols in order to efficiently reach consensus in
real time. We briefly describe a largely unexplored class of real-
time, distributed planning problems (inspired by interacting space-
craft missions), new challenges they pose, and a general approach
to solving the problems. These problems involve self-interested
agents that have infrequent communication but collaborate on joint
activities. We describe a Shared Activity Coordination (SHAC)
framework that provides a decentralized algorithm for negotiating
the scheduling of shared activities over the lifetimes of separate
missions, a soft, real-time approach to reaching consensus during
execution with limited communication, and a foundation for cus-
tomizing protocols for negotiating planner interactions. We apply
SHAC to a realistic simulation of interacting Mars missions and
illustrate the simplicity of protocol development.

1. INTRODUCTION
When interleaving planning and execution, an agent adjusts its

planned activities as it gathers information about the environment
and encounters unexpected events, and interacting agents coordi-
nate these adjustments to manage commitments with each other.
Demand for this kind of autonomous agent technology is grow-
ing for space applications. Autonomous spacecraft promise new
capabilities and cost improvements in exploring the solar system.
Spacecraft (and rovers) that explore other planets have intermittent,
delayed communication with Earth, requiring that they be able to
manage their resources and operate in for long periods in isola-
tion. The common approach to autonomous decision making is to

NOTE TO REVIEWERS: The authors intend to demonstrate
simulated spacecraft coordination for the Mars scenario at the con-
fer ce #e iesearch described in this paper was carried out at the Jet
Propulsion Laboratory, Califomia Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission andor a fee.
Copyright 2002 ACM X - X X X X X - X X - X I X X I X X ... $5.00.

place integrated image analysis, planning, and execution systems
on-board the spacecraft.

In addition, there is a growing trend toward multi-spacecraft mis-
sions. Over forty multi-spacecraft missions have been proposed,
including formation flying teams and over 16 planned missions to
Mars in the next decade. These spacecraft will coordinate mea-
surements, share images, and route data to and form Earth. Sep-
arate missions, such as those to Mars have their own budgets, ex-
periments, and operations teams. As such, the spacecraft represent
self-interested entities that benefit from collaborative interactions.

But, even a single spacecraft has multiple science instruments
representing different goals of different scientists, and different op-
erations groups will have different areas of expertise over differ-
ent subsystems for control. These different groups negotiate over
mission plans in the same way that different Mars missions must
collaborate over spacecraft interactions. Whether this negotiation
is done on-board or on Earth, there is a distributed operations plan-
ning problem that benefits from. automation. Both also have real-
time aspects. Onboard systems must plan safely over near- and
long-term horizons, and ground systems must also replan based on
changing contexts in daily, weekly, and lifelong mission exercises.
Ground planning also suffers from communication Constraints. Sci-
entists from different universities or opposite sides of the globe will
intermittently provide inputs and respond on an irregular basis. A
collaborationhegotiation system must be built around communica-
tion constraints to meet hard deadlines for coming to consensus on
consistent operations plans.

In this work, we will briefly characterize this general problem in
terms of activity interaction types and communication constraints
and discuss its challenges. The field of multiagent planning has
largely focused on fully cooperative planning and execution [4, 5,
13, 8, 21. Market-based agent systems address near-term resource
negotiation but have rarely addressed how near-term decisions af-
fect longer-term goals. Multiagent systems built for Robocup Soc-
cer competitions mainly address collaborative multiagent execution
in an adversarial environment and have limited planning capabili-
ties. These approaches do not adequately address real-time plan-
ning for self-interested agents.

This paper presents a framework for Shared Activity Coordi-
nation (SHAC). SHAC consists of an algorithm for continually
coordinating agents and a foundation for rapidly designing and
implementing coordination protocols based on a model of shared
activities. In the same fashion that a real-time planning system
must commit to actions to pass to an execution system, a real-
time coordination system must additionally establish consensus on
shared activities before they are executed based on communica-
tion constraints. Our ultimate goal is to create interacting agents
that autonomously adjust their coordination protocols with respect

mailto:aig.jpl.nasa.gov

to unexpected events and changes in communication or computa-
tion constraints so that the agents can most efficiently achieve their

First we characterize a class real-time, self-interested multiagent
planning problem that exists for space Then we describe the shared
activity model, the SHAC algorithm, and its interface to the plan-
ner. Then we specify some generic roles and protocols using the
SHAC framework that build on prior coordination mechanisms.
Then we describe how our current implementation of SHAC is used
to coordinate the communication of two rovers and an orbiter in a
simulated Mars scenario. We follow with future research needs re-
vealed in this scenario and comparisons to related work.

goals.

2. CONTINUAL COORDINATION PROBLEM
As mentioned before, agents that interleave planning and exe-

cution must commit near-term activities to the execution system
while receiving feedback in the form of state updates and activ-
ity performance. One such continual planning system, CASPER
(Continuous Activity Scheduling Planning Execution and Replan-
ning) identifies the period when the planner commits activities to
the execution as a commit window [l]. Distributed planning agents
must additionally reach consensus on team interactions before exe-
cution. As explored in the team plan model given by TEAMCORE
[13, 121 formalizations of Shared Plans [8], and coordination inter-
actions of TAEMS [4], these interactions could include

use and replenishment of shared resources,

0 joint actions for achieving a mutually beneficial subgoal,

0 choice of methods for achieving a team subgoal,

participation and role assignments in a joint plan, and

0 proposals and commitments of the above.

3. SHAC
However, reaching consensus on these interactions is compli-

cated when the agents can only communicate intermittently. De-
pending on the number of agents involved in a particular interac-
tion, consensus may need to be established far in advance so that
negotiations can be propagated far in advance of execution. Thus,
for any particular set of interactions, a consensus window, within
which the agents must limit negotiation and establish agreement,
should be defined. For example, if three agents must negotiate a
joint action in advance of execution but can only communicate pair-
wise in disjoint time windows, a consensus window must extend at
least to cover windows connecting all three agents. Inside the con-
sensus window, a simple protocol eliminating negotiation (such as
all agree or reject) must be employed to guarantee consensus. In-
teractions beyond the consensus window can be negotiated.

It is an open problem how consensus windows should be de-
fined based on interaction types and communication opportunities.
While thls paper does not solve this problem, it describes an im-
plemented infrastructure and testbed for developing and evaluating
alternative consensus windows and protocols.

Our approach, called Shared Activity Coordination (SHAC), pro-
vides a general algorithm for interleaving planning and the ex-
change of plan information based on shared activities. Agents co-
ordinate their plans by establishing consensus on the parameters
of shared activities. Figure 1 illustrates this approach where three
agents share one activity and two share another. The constraints
denote equality requirements between shared activity parameters in
different agents. The left vertical box over each planner’s schedule

represents a commit window that moves along with the current time.
A consensus window is shown to the right of the commit window,
within which consensus must be quickly established before com-
mitting. Since consensus is hard to maintain when all agents can
modify a shared activity’s parameters at the same time, agents must
participate in different coordination roles that specify which agent
has control of the activity. As shown in the figure, SHAC interacts
with the planning and execution by propagating changes to the ac-
tivities, including their parameters and constraints on the values of
those parameters.

SHAC continually coordinates by interfacing to a combined plan-
ning/execution system that responds to failures and state updates
from the execution system. Our implementation interfaces with
one such continual planning system, CASPER, mentioned in the
previous section. Instead of batch-planning in episodes, CASPER
continually adapts near and long-term activities while re-projecting
state and resource profiles based on updates from sensors.

3.1 Shared Activities
The model of a shared activity is meant to capture the infor-

mation that agents must share, including control mechanisms for
changing that information. A shared activity is a tuple (parameters,
agent roles, protocols, decomposition, constraints). The pa-
rameters are the shared variables and current values over which
agents must reach consensus by the time the activity executes. The
agent roles determine the local activity of each agent corresponding
to the joint action. To provide flexible coordination relationships,
the role activities of the shared activity can have different condi-
tions and effects as specified by the local planning model. The
shared parameters map to local parameters in the role activity.

For example, a shared data communication activity can map to
a receive role activity for one agent and a send role activity
for another. Shared parameters could specify the start time, dura-
tion, transfer rate, and data size of the activity. The data size is
depleted from the sender’s memory resource but added to the re-
ceiver’s memory. The agents could have separate power usages
for transmitting and receiving. In this case the resources are not
shared. Another shared activity could be the use of a common
transport resource. Although one agent in an active transit role
actually changes position, other agents in passive roles have lo-
cal activities that only reserve the transport resource. Figure 3.1
shows an instance of this shared activity where an orbiter receives
communication from a rover.

Protocols are the mechanisms assigned to each agent (or role)
that allow the agents to change constraints on the shared activity,
the set of agents assigned to the activity, and their roles. In Fig-
ure 3.1, both the orbiter and rover use an argumentation protocol
to negotiate the scheduling and attributes of the communication.
Constraints will be described in the next section, and a variety of
protocols will be defined in the Protocols section.

The shared decomposition enables agents to select different team
methods for accomplishing a higher level shared goal. Specifically,
the decomposition is a set of shared subactivities. The agents can
choose the decomposition from a pre-specified set of subactivity
lists. For example, a joint observation among orbiters could de-
compose into either (measure, process-image, downlink)
or (measure, downlink).

3.2 Constraints
Constraints are created by agents’ protocols to restrict sets of val-

ues for parameters (parameter constraints) and permissions for ma-
nipulating the parameters, changing constraints on the parameters,
and scheduling shared activities (permission constraints). These

activity activity 8~ activity activity & activity activity &
updates updates COnStrainl updates Constraint constraint

updates updates updates

.......

Figure 1: Activities shared among continual planners

shared-activity communicate com-id-12 {
time start-time = 2004-302:09:30:00; / / date
int duration = 200; / / seconds
int data-size = 25600; / / 25.6 Mbits
real xmit-rate = 128.0; / / 5.0 Kbps
int priority = 1; / / critical
roles =

receive by orbiter,
send by rover;

receive argumentation,
send argumentation;

receive (move, delete, xmit-rate),
send (delete, data-size, priority);

rover start-time = ([2004-302:09:30:00, 2004-302:09:38:00],

protocols =

permissions =

parameter-constraints =

[2004-302:18:30:00, 2004-302:18:38:00]);
1

Figure 2: An instance of a shared communication activity between a rover and orbiter

constraints restrict the privileges (or responsibilities) of agents in
making coordinated planning decisions. By communicating con-
straints, protocols can come to agreement on the scheduling of an
activity without sharing all details of their local plans.

A parameter constraint is a tuple (agent, parameter, value set)
The agent denotes who created the constraint. Some protocols dif-
ferentiate their treatment of constraints based on the agent that cre-
ated them. For example, the asynchronous weak commitment algo-
rithm prioritizes agents so that lower-priority agents only conform
to higher-priority agent constraints [15]. Agents can add to their
constraints on a parameter, replace constraints, or cancel them. A
string parameter constraint, for example, can restrict a parameter to
a specific set of strings. An integer or floating point variable con-
straint is a set of disjoint ranges of numbers. Scheduling constraints
can be represented as constraints on a start time integer parameter.
This is shown in Figure 3.1 where the rover restricts the start time
of the communication between two eight minute intervals.

Permission constraints determine how an agent's planner is al-
lowed to manipulate shared activities. The following permissions
are currently defined for SHAC:

0 parameters - change parameter values

0 move - set start time

0 duration - change duration of task

0 delete - remove from plan

0 choose decomposition - select shared subactivity of an or

0 add - add to plan'

0 constrain - send constraints to other agents

activity

In the communication example in Figure 3.1, the receiver is al-
lowed to reschedule (move) the activity, delete it, or change the
transmission rate. The sender cannot move the activity, but can
delete it and change the requested size and priority of the data.

'This permission applies to a class of shared activities (i.e. an
agent may be permitted to instantiate a shared activity of a par-
ticular class).

3.3 Coordination Algorithm
The purpose of the SHAC algorithm is to negotiate the schedul-

ing and parameters of shared activities until consensus is reached.
Figure 3 gives a general specification of the algorithm. SHAC is
implemented separate from the planner, so steps 1 through 3 are
handled by the planner through an interface to SHAC. Step 4 in-
vokes the protocols that potentially make changes to refocus coor-
dination on resolving shared activity conflicts and improving plan
utility. SHAC sends modifications of shared activities and con-
straints to sharing agents in step 5. In step 6, shared activities
and constraints are updated based on changes received from other
agents.

Ignoring coordination, a continuous planner must determine when
it is appropriate to release activities to the execution system. In
some cases, an activity involved in a conflict may either be re-
leased (requiring the planner to recover from potential failures) or
postponed (to allow the planner to recover before a failure occurs).
CASPER keeps a commit window (an interval between the current
time and some point in the near future) within which activities can-
not be modified and passes these activities to the execution system.

This interaction with the execution system becomes more com-
plicated when agents share tasks. SHAC must make sure that when
a shared activity is released, all agents release it while in consen-
sus on the start time and other parameters of the task. Ideally
the agents should establish consensus before the commit window.
SHAC avoids changes in the commit window by keeping a con-
sensus window that extends from the commit window forward by
some period specific for the activity. As time moves forward, the
windows extend forward. When a shared activity moves into the
consensus window, the agents switch to the simple consensus pro-
tocol to try and reach consensus before the activity moves into the
commit window

4. PROTOCOLS
In general, protocols determine when to communicate, what to

communicate, and how to process received communication. Dur-
ing each iteration of the loop of the coordination algorithm (Figure
3), the protocol determines what to communicate and how to pro-
cess communication. A protocol is defined by how it implements
the following procedures to be called during step 4 of the SHAC co-
ordination algorithm for the shared activity to which it is assigned:

1. modify permissions of the sharing agents

2. modify locally generated parameter constraints

3. add/delete agents sharing the activity

4. change roles of sharing agents

The default protocol, representing a base class from which other
protocols inherit, does nothing for these methods. However, even
with this passive protocol, the SHAC algorithm still provides sev-
eral capabilities:

joint intention A shared activity by itself represents a joint inten-
tion among the agents that share it.

mutual belief Parameters or state assertions of shared activities
can be updated by sharing agents to establish consensus over
shared information.

resource sharing Sharing agents can have identical constraints on
shared states or resources.

active/passive roles Some sharing agents can have active roles with
execution primitives while others have passive roles without
execution primitives.

masterlslave roles A master agent can have permission to sched-
ule/modify an activity that a slave (which has no permis-
sions) must plan around.

The following sections describe some subclasses of this abstract
protocol, demonstrating capabilities that each protocol method can
provide.

4.1 Argumentation
Argumentation is a technique for negotiating joint beliefs or in-

tentions [9]. Commonly, one agent makes a proposal to others with
justifications. The others evaluate the argument and either accept
it or counter-propose with added justifications. This technique has
been applied to teamwork negotiation research to form teams, reor-
ganize teams, and resolve conflicts over members’ beliefs [14]. It
can also be used to establish consensus on shared activities.

A shared activity and associated parameter values are the pro-
posal or counterproposal. Justifications are given as parameter con-
straints. A proposal is a change to a shared activity that does not
violate any parameter constraints. A counterproposal may violate
constraints. Protocol method 2 must be implemented to provide
the parameter constraint justifications for proposals and counter-
proposals. In order to avoid race conditions, protocol method 1
regulates permissions.

Argumentation method 1

if this agent sent the most recent proposal/counterproposal

- if planner modified shared activity
* remove self’s modification permissions

else

- give self modification permissions (e.g. move and delete)

Argumentation method 2

0 if planner modified shared activity

- generate parameter constraints describing locally con-
sistent values

As an example, one agent can propose an activity with a particu-
lar start time and add justifications in the form of all intervals within
which the shared activity can be locally scheduled. Other agents
can replan to accommodate the proposal and counter-propose with
their own interval restrictions if replanning cannot accommodate
others’ constraints. If the agents cannot establish consensus before
the consensus window, a higher ranking agent can mandate a time
that benefits most of the agents. Of course, there are many varia-
tions on this example. Agents may be restricted because they are
slaves or do not have constraint permissions to counter-propose.
4.2 Delegation

Delegation is a mechanism where an agent in a passive delegator
role assigns and reassigns activities to different subsets of agents in
active subordinate roles. The delegator and subordinate protocols
only need

Delegator method 3

if agent roles empty

Given: a plan with multiple activities including a set of sharedactivities with constraints and a projection of plan into the
future.

1. Revise projection using the currently perceived state and any newly added goal activities.

2. Alter plan and projection while honoring constraints.

3. Release relevant near-term activities of plan to the real-time execution system

4. For each shared activity in sharedactivities,

0 if outside consensus window,
- apply each associated protocol to modify the shared activity;

else
- apply simple consensus protocol.

5. Communicate changes in sharedactivities.

6. Update shared-activities based on received communications.

7. Go to 1.

Figure 3: Shared activity coordination algorithm

- choose an agent to whom to delegate the activity
- add (agent, subordinate) to agent roles

Subordinate method 3

0 if cannot resolve conflicts/threats involving activity

- remove self from agent roles

5. APPLICATION TO MARS SCENARIO
Now we describe how SHAC is applied to a simulated three-

day scenario involving two Mars Exploration Rovers (MERs), the
Mars Odyssey orbiter, Mars Global Surveyor, and the Mars Ex-
press orbiter. The delegation protocol described previously was
subclassed for the rovers to assign and reassign the routing of im-
ages to the orbiters based on how quickly they can deliver the data
to Earth. Different mastedslave and activdpassive roles are defined
using permission constraints for the shared activities to implement
a basic protocol for coordinating communication to and from Earth.
Interactions over communication (once delegated) are between two
agents, so the consensus window is defined to cover communica-
tion activities spanning two communication opportunities into the
future. Once in the consensus window, the rover cannot redele-
gate activities unless the orbiter cannot resolve conflicts and must
decommit. We intend to experiment with other protocols and con-
sensus window definitions in this domain in our future work.

The MERs (MER A and MER B) and the orbiters can commu-
nicate with Earth directly, but the MERs can optionally route data
through the orbiters, which communicate with Earth at a higher
bandwidth. The rovers need daily communication with ground op-
erations to receive new goals. The rovers will often fail to traverse
to a new target location and cannot proceed until new instructions
come from ground operations. In this scenario both MERs must ne-
gotiate with the assigned orbiter to determine how to most quickly
get a response from ground after sending an image of the surround-
ing area.

Each MER has a communication state shared with each orbiter
that tracks when the image is generated, when it gets to Earth,
and when the response from ground operations arrives to the rover.

Shared activities for changing the state are shown for different rout-
ing options in Figure 4. The rover’s activity for generating an im-
age from its panoramic camera changes the state to request to
communicate its need to downlink and receive an uplink. Activities
for sending the image to Earth (either directly or through Odyssey),
change the state to await for uplink state to indicate that the
rover will then be waiting for the uplink. Ground operations needs
a period of time to generate new commands for the uplink, so if
the uplink is received by Odyssey, the state changes to received
to indicate that now the rover can get the uplink from Odyssey.
Once the rover receives the uplink, the state changes back to the
normal no pending request state. Rover tasks (such as a
traverse) need the uplinked data before executing, so it places a lo-
cal constraint that shared state be no pending request dur-
ing its scheduled interval. There are no shared resources although
communication requests from a MER have effects on many local
resources of both the MER and the orbiter. All of the shared ac-
tivities have active master and passive slave roles. The MERs and
obiters both take the master role for activities labeled for them in
Figure 4.

CASPER planners for each of the MERs and orbiters first build
their three-day plans separately to optimize the timely delivery of
priority weighted science data, resolving any local constraints on
memory, power, battery energy, etc. The three-day schedules con-
stitute over 900 tasks for each MER and over 1300 for each of the
orbiters with 30 statdresource variables for each MER and 22 for
the orbiters. Planning is slowed by a factor of 440 to account for
differences between a desktop workstation and a radiation-hardened
flight processor. Communication for coordination is restricted to
times when the orbiters pass overhead. With the exception of Mars
Express, the orbiters pass overhead once every eight hours. Be-
cause of its irregular orbit, Mars Express sees the rovers only once
every 96 hours. Because of this, we actually used no consensus
window for communication with Mars Express, putting pressure
on the planners to resolve conflicts during image transmission.

When coordination begins, the planners send their communica-
tion requests to the other planners while optimizing their plans.
Before these updates are received, the initial views of the shared
uplink status are shown in Figure 5. The MERs begin with con-
flicts with their traverse tasks because the uplink has not yet been

MER activities H
Odyssey actidtiesj

downlink critical data

through
Odyssey

direct

uplink f rom Ear th
critical comm comm
pancam odyssey earth
,-, -1 i."

mi!?!:!!e.wait

I comm comm
i earth odyssey
I!I
I
I

I

Figure 4: DownlinWuplink states for a rover

received from Earth. The coordination algorithm commands the
planners to repetitively process shared task updates, replan to re-
solve conflicts by recomputing the shared state and modifying sci-
entific measurement operations to adjust for the increased power
and memory needs, and send task updates. After a minute and a
half, MER A, B, and Odyssey agree on routing the downlink and
uplink through Odyssey to get the uplinked commands in time for
the traversal on different days. he resulting shared state is shown at
the bottom of Figure 5. The planners reach consensus that coordi-
nation is complete and sleep while waiting for task updates.

Among other failed communication attempts, we triggered an
anomaly in MER A's plan causing it to cancel its first day's tasks
and shift the entire schedule forward a day. Before sending the
updated shared tasks, replanning was issued to resolve local con-
straints to avoid propagating inconsistent state information to Odyssey.
All conflicts were resolved in a few seconds except the traverse
conflicts with a w a i t state. Then MER A sends a task update to
restart coordination. Coordination completes in less than a minute
with data again being routed through Odyssey.

While we have only experimented with simple protocols, this
application of SHAC to the Mars scenario shows how planners can
coordinate during execution while making minimal concessions to
ideal plans and responding to unexpected events. In the next sec-
tion, we discuss how SHAC builds on related work and discuss new
research challenges for decentralized, coordinated planning.

6. DISCUSSION AND RELATED WORK
Conflicts among a group of agents can be avoided by reducing

or eliminating interactions by localizing plan effects to particular
agents [lo], and by merging the individual plans of agents by in-
troducing synchronization actions [7]. In fact, planning and merg-
ing can be interleaved [6]. Earlier work studied interleaved plan-
ning and merging and decomposition in a distributed version of
the NOAH planner [3] that focused on distributed problem solving.
More recent research builds on these techniques by formalizing and
reasoning about the plans of multiple agents at multiple levels of
abstraction to localize interactions and prune unfruitful spaces dur-
ing the search for coordinated global plans [Z].

DSIPE [5] employs a centralized plan merging strategy for dis-
tributed planners for collaborative problem solving using human
decision support. Like our approach, local and global views of
planning problem help the planners coordinate the elaboration and
repair of their plans. DSIPE provides insight into human involve-
ment in the planning process as well as automatic information fil-
tering for isolating necessary information to share. While our ap-
proach relies on the domain modeler to specify up front what infor-
mation will be shared, SHAC supports a fully decentralized frame-
work and focuses on interleaved coordination and execution.

In many ways this work is following the Generalized Partial
Global Planning approach to using a mix of coordination protocols
tailored for the domain [4]. SHAC offers an altemative framework
for separating implementation of these mechanisms from the plan-
ning algorithms employed by specific agents. Unlike GPGP, SHAC
provides a modular framework for combining lower-level mecha-
nisms to create higher-level roles and protocols. Our future work
will build on GPGP's evaluations of mechanism variations to bet-
ter understand how agents should coordinate for domains varying
in agent interaction, communication constraints, and computation
limitations.

Finally, TEAMCORE provides a robust framework for devel-
oping and executing team plans 113, 121. This work also offers
a decision-theoretic approach to reducing communication within
a collaborative framework. Research is needed to investigate the
integration of coordinated planning with robust coordinated execu-
tion.

An assumption commonly made in multiagent research is that
agents will be able to communicate at all times reliably. In the
Mars scenario, the spacecraft communicate with each other in vary-
ing time windows and frequencies, and the two MERs can never
directly talk to each other. Establishing consensus on beliefs and
intentions is impossible without certain communication guarantees
[111. Understanding the communication patterns that make consen-
sus possible and the overhead for establishing consensus is critical
for multiagent research.

7. CONCLUSION

I .'...... + . . :""""

Odyssey

comm odyssey
H H H HH HH H

CO" critical comm comm
earth

l s l u s t wait
H

MER A

. I.....< . . . : 3 : i , " c : ~ . . e . ? ~ ,_ ~ I ! :"""'i . . I : . :
/ commod&sey I H H i H i H H HH H
j comnj COmm

earth Dancam earth i trovnrrn earth

Figure 5: Downlinkhplink shared state for MER A. From top to bottom, Odyssey's initial view, MER A's initial view, and the
common view after Coordination.

We have introduced shared activity coordination as an approach
to designing role-based coordination mechanisms for planning agents.
SHAC provides several coordination capabilities upon which we
have specified a few higher-level coordination protocols that exer-
cise different aspects of the SHAC model. We have also described
an algorithm for continually coordinating planning agents during
execution using these protocols. While our future work is aimed
at evaluating the benefits of different protocols for different classes
of multiagent domains, we validate our approach in coordinating
three simulated spacecraft in the presence of an unexpected event.

Artificial Intelligence, 104: 1-70, 1998.

reasoning. In Proc. DARPA Workshop on Innov. Approaches
io Planning, Scheduling and Control, pages 115-125,
November 1990.

York, 1995.

team-oriented programming. In Proc. ATAL, 1999.

[IO] A. Lansky. Localized search for controlling automated

[1 I] S. Mullender. Distributed Systems. Addison-Wesley New

[12] D. Pynadath, M. Tambe, N. Cauvat, and L. Cavedon. Toward

[131 M. Tambe. Towards flexible teamwork. Journal ofArtificia1 - -
Intelligence Research, 7:83-124, 1997.

Magazine, 20(4), 1999.

satisfaction problem: Formalization and algorithms. IEEE
Trans. on KDE, 10(5):673485, 1998.

8. REFERENCES [141 M. Tambe and H. Jung. The benefits of arguing in a team. AI

[15] M. Yokoo and K. Hirayama. The distributed constraint
[I] S. Chien, R. Knight, A. Stechert, R. Sherwood, and

G. Rabideau. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. ECP,
pages 300-307,2000.

[2] B. Clement and E. Durfee. Performance of coordinating
concurrent hierarchical planning agents using summary
information. In Proc. ATAL, pages 213-227,2000.

[3] D. Corkill. Hierarchical planning in a distributed
environment. In Proc. IJCAI, pages 168-175, 1979.

[4] K. Decker. Environment centered analysis and design of
coordination mechanisms. PhD thesis, University of
Massachusetts, 1995.

[5] M. desJardins and M. Wolverton. Coordinating a distributed
planning system. AI Magazine, 20(4):45-53, 1999.

[6] E. Ephrati and J. Rosenschein. Divide and conquer in
multi-agent planning. In Proc. AAAI, pages 375-380, July
1994.

[7] M. P. Georgeff. Communication and interaction in
multiagent planning. In Proc. A A A I , pages 125-129, 1983.

[8] B. Grosz and S. Kraus. Collaborative plans for complex
group action. Artificial Intelligence, 86:269-358, 1996.

[9] S. Kraus, K. Sycara, and A. Evanchik. Reaching agreements
through argumentation: a logical model and implementation.

