
Abstract Communication for Coordinated Planning

Bradley J. Clement
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M / S 126-347

Pasadena, CA 93 109-8099 USA
bclenzent@ aig.jpl.nasa.gov

Abstract:

Previous work offers evidence that distributed plan-
ning agents can greatly reduce communication costs
by reasoning at abstract levels. While it is intuitive
that improved search can reduce communication in such
cases, there are other decisions about how to communi-
cate plan information that greatly affect communication
costs. This paper identifies cases independent of search
where communicating at muItiple levels of abstraction
can exponentially decrease costs and where it can ex-
ponentially add costs. We conclude with a process for
determining appropriate levels of communication based
on characteristics of the domain.

Introduction
There are many motivations for distributed planning:

physically separate points of control: shared resources, self-
interested agents, computational constraints, and communi-
cation costs. This work demonstrates how communication
costs can be reduced among a group of interacting planning
agents by exploiting abstraction in hierarchical plans'. The
basic idea is that agents do not need to share their full plan
information in the coordinated planning process. This can
reduce communication delay or obtain a certain amount of
privacy.

Hierarchical Task Network (HTN) planners (Erol,
Hendler, & Nau 1994) represent abstract actions that decom-
pose into choices of action sequences that may also be ab-
stract, a d HTN plaming problems 2re requests tc! perhrm
a set of abstract actions given an initial state. The planner
subsequently refines the abstract tasks into less abstract sub-
tasks to ultimately generate a schedule of primitive actions
that is executable from the initial state. This differs from
STRIPS planning where a planner can find any sequence of
actions whose execution can achieve a set of goals. HTN
planners only find sequences that perform abstract tasks and
a domain expert can intuitively define hierarchies of abstract

Copyright @ 2002, American Association for Artificial InteIli-

art of this work was performed at the Jet Propulsion Laboratory,
California Institute o f Technology, under contract with the National
Aeronautics and Space Administration. This work was also sup-
ported in part by DARPA(F30602-98-2-Ol42).

(www.aaai.org). All rights reserved.

Edmund H. Durfee
Artificial Intelligence Laboratory

University of Michigan
1101 Beal Avenue

Ann Arbor, MI 48109-2110 USA
durfee@umiclz.edu

tasks to make the planner rapidly generate all sequences of
interest.

Previous research (Korf 1987; Knoblock 1991) has shown
that, under certain restrictions, hierarchica1 refinement
search reduces the search space by an exponential factor.
Subsequent research has shown that these restrictions can
be dropped by reasoning during refinement about the condi-
tions embodied by abstract actions (Clement & Durfee 2000;
1999; Clement et al. 2001). These summarized conditions
represent the internal and external requirements and effects
of an abstract action and those of any possible primitive ac-
tions into which it can decompose. Using this information, a
planner can detect and resohe conflicts between abstract ac-
tions and sometimes can find abstract solutions or determine
that particular decomposition choices are inconsistent.

In this paper, we examine how these abstract reasoning
techniques affect communication. While it may seem obvi-
ous that less information i s communicated at abstract levels,
it is not clear when abstract information should be shared.
Should agents send their entire plan hierarchies at once, only
send subplans one-at-a-time as they are requested, or send
levels of subplans? We show that it depends on the domain
and describe a process for determining efficient communi-
cation strategies based on the domain.

We use a manufacturing domain to illustrate our ap-
proach. In the next section, we describe this domain, and
then we give some backgound on summary information.
We next analyze the communication costs of the manufac-
turing example and domains in general to show which strate-
gies minimize communication costs. We then describe the
process for determining good strategies.

Manufacturing Domain
The following simple example illustrates a particular prob-
lem to motivate this work. Consider a manufacturing plant
where a production manager, a facilities manager, and an
inventory manager each have their own goals and have sepa-
rately constructed hierarchical plans to achieve them. How-
ever, they still need to coordinate over the use of equipment,
the availability of parts used in the manufacturing of other
parts, storage for the parts, and the use of transports for mov-
ing parts. The state of the factory i s shown in Figure 1. In
this domain agents can produce parts using machines M1
and M.2, service the machines with a tool, and move parts

A

dock

B C tool

maintenance

service MI M2 SerYica M2 M!

service iM1 service M2 move tool

equip MI tool calibrate MI
to M1

Figure 1 : A simple example of a manufacturing domain Figure 3: The facilities manager’s hierarchicaI plan

produce H

produce B from G
A

produce G

produce G move H

move-part s

A
move C to dock move D&E

to and from the shipping dock and storage bins on the shop
floor using transports. Initially, machines M1 and M2 are
free for use, and the transports (transport1 and transport2)
and all of the parts (A through E) shown in their storage lo-
cations are avaiIable.

The production manager is responsible for creating a G
and an H part using machines M1 and M2. Both M1 and M2
can consume parts A and B to produce G. M2 can also pro-
duce H from G. The production manager’s hierarchical plan
for manufacturing H involves using the transports to move
the needed parts from storage to the input trays of the ma-
chines, manufacturing G and H, and transporting Ii back to
storage. This plan is shown in Figure 2. Arcs through sub-
plan branches mean that the conjunction of subplans must
be executed. Branches without arcs mean that onIy one plan
must be executed successfully to achieve the goal of the par-
ent. The decomposition of produce-G-on-Ml is similar to
that of produce_G_on_M2.

The facilities manager must service each of these ma-
chines by equipping it with a tool and then calibrating it.
The machines are unavailable for production while they are
being serviced. The facilities manager’s hierarchical plan
branches into choices of servicing the machines in differ-
ent orders and uses the transports for getting the tool from
storage to the machines (Figure 3). The decomposition of
service-iU2Ml is similar to that of service_Mln/I2.

The parts must be “available” on the space-limited shop
fldor in order for an agent to use the machines to produce
them. Whenever an agent moves or uses a part, it becomes

Figure 4: The inventory manager’s hierarchical plan

’ on M2 toiM2 buildH tobinl move D to bin3 move E to bin4
A

move A&B build G z
move A to M2 move B to M2

Figure 2: The production manager’s hierarchical plan

unavailable. The inventory manager’s goal is just to move
part C to the dock and move D and E into bins on the shop
floor (shown in Figure 4).

So what makes this a decentralized planning problem?
The managers’ plans use common resources, requiring
them to coordinate or risk resource conflicts leading to
failure of achieving their goals.
The managers developed their own plans a priori and are
ignorant of the intentions of the others.
The managers are self-interested because they are sepa-
rately accountable for their goals.
One might assume that it is unlikely that communication

between workstations in a factory would introduce any sig-
nificant overhead to the planning problem. We will show
that there is significant overhead when the plans scale. This
domain is based on operators with conditions and effects oii
propositional states. Later, we will expand on this domain
with deeper hierarchies and metric resources.

Summary Information
In this section, we give a brief overview of summaty infor-
mation. For detailed information, consult (Clement & Dur-
fee 1999; Clement et al. 2001; Clement 2002).

Summary information for a task represents the conditions
and effects embodied in the task’s potential decompositions.
These conditions can be summarized for both propositional
state and metric resources. An abstract task’s state variable
summary information includes elements for pre-, in-, and
postconditions. Summary preconditions are conditions that
must be met by the initial state or previous external tasks in
order for a task to decompose and execute successfully, and
a task’s summary postconditions are the effects of its decom-
position’s execution that are not undone internally. We use
summary inconditions for those conditions that are required

or asserted in the task’s decomposition during the interval of
execution. All summary conditions are used to reason about
how state variables are affected while performing an abstract
task, and they have two orthogonal modalities:

must or may indicates that a condition holds in all or some
decompositions of the abstract task respectively and
f i r s t , last , somet imes, or always indicates when a condition
holds in the task’s execution interval.
Suppose that the factory managers in the example wish to

coordinate their plans. Each agent could have preprocessed
its plan to derive summary information for every abstract
plan operator in the hierarchy. For a particular abstract plan,
this information includes the summary pre-, post-, and in-
conditions that correspond to the external preconditions, ex-
ternal postconditions and internal conditions respectively of
the plan based on its potential refinements. Below I show a
subset of state summary conditions for the production man-
ager’s top-level plan. Following each literal are modal tags
for existence and timing information. “Mu” is must;
“Ma” is may; T“ is f i r s t ; “E’ is last; “S” is sometimes;
and “A” is always.
Production manager’s p r o d u c e H plan:
Summary preconditions:
available (AJMuF, available (Ml)MaS,
available (M2)Mas
Summary inconditions:
available(Ml)MaS, available(MZ)MuS,
available (G)MuS, lavailable (A)MuS,
avai lab1 e (A) Mus, Tavailable (PI1) Mas,
-available (M2) MUS, l a m i lable (G) Mus,
available (Hi Mus, -available (H) MUS
Summary postconditions:
-available(A)MuS, available (MlIMaS,
lavaiiable(G)MuS, available (M2)MuS,
available (H) MuL

available(M2) is a must precondition of the top-
level plan, produce-H, because no matter how the hier-
archy is decomposed, M2 must be used to produce H, so
avaiZable(M2) must be established externally to the pro-
duction manager’s plan. However, avuiZable(A4l) is a
may precondition because the production manager may
not use M1 if it chooses to use M2 instead to produce G.
avaiZabEe(A) is a f irst summary precondition because part
A is needed at the beginning of execution when it is trans-
ported to one of the machines. Since the machines are not
needed at the very beginning when parts are being trans-
ported, they are not f i r s t but sometimes conditions since
they are needed at some point in time during execution.

A summarized resource usage consists. of ranges of po-
tential resource usage amounts during and after performing
an abstract task, and we represent this summary information
using the structure

(local-minrange, 1 oca1 - m a x r a n g e , pe rs i s t range) I

where the resource’s local usage occurs within the task’s
execution, and the persistent usage represents the usage that
lasts after the task terminates for depletable resources.

The usage ranges capture the multiple possible usage pro-
files of an task with multiple decomposition choices and tim-
ing choices among loosely constrained subtasks. For exam-

1
maintenance

produce H b) 1 1

pr duce H f om G

service M1 M2

I 5 service: ,service,

\ M2 \ move-parts 1
Figure 5: Solutions to the manufacturing domain

ple, in the manufacturing domain suppose A, E, G, etc. are
groups of parts represented as metric resources, as well as
the transports; the storage bins and dock have limited capac-
ity for parts; and the machines consume and produce num-
bers of parts at a time based on the number of input parts.
If the production manager’s pIan was to produce 20 H parts,
the summarized resource usage would the following:

A 1[-20, -2o],[o,ol, [-2a, -201)
G
N

M1
M2

{[O, 01, P O , 201, [O , 01)
([O, 01, I203 201, P O , 201)

(P I 01![1> 11, [O, 01)
(P? 01![0, 11, io, 01)

The usages for A mean that over the duration of the top-
level plan, the quantity of A will definitely be depleted [-
20,-201, but there is at least some period where A is not con-
sumed [O,O]. G is produced and consumed, so there are no
persistent effects. M1 and M2 are non-depletabIe (atomic)
resources, so they also have no persistent effects.

With summary information derived for the managers’
plan hierarchies, the production and inventory managers
could send the summary information for their top-level plans
to the facilities manager. The facilities manager could then
reason about the top-level summary information for each of
their plans to determine that if the facilities manager ser-
viced all of the machines before the production manager
started producing parts, and the production manager finished
before the inventory manager began moving parts on and
off the dock (as shown in Figure 5a), then a11 of their plans
can be executed (refined) without conflict. Then the facili-
ties manager could instruct the others to add communication
actions to their pIans so that they synchronize their actions
appropriately.

By reasoning at abstract Ievels with summary informa-
tion, planning agents can find solutions at abstract levels,
prune inconsistent decompositions, and guide the decornpo-
sition to quickly resolve conflicts. This results in a doubly
exponential speedup in planning time (Clement & Durfee
2000; Clement et al. 2001). Next we explore how this af-
fects communication.

Communication Experiments
Here we show that, depending on how communication costs
are calculated and how summary information is cornmuni-
cated among the agents, communication costs may be expo-
nentially reduced. If only the number of messages is a con-
cern, then at one extreme sending the pIan hierarchy without
summary information makes the most sense. At another ex-
treme it makes sense to send the summary information for
each task in a separate message as each is requested. Sil l ,
there are cases when sending the summary information for
tasks in groups makes the most sense. This section will ex-
plain how a system designer can choose an appropriate level
of granularity to send summary information, potentially re-
ducing communication overhead exponentially.

Consider a simple protocol where agents request coordi-
nation from a central coordinating agent. During the search
for a feasible solution, whenever it decomposes a task, the
coordinator requests summary information for the subtasks
that it has not yet received. For the manufacturing domain,
the coordinator may already have summary information for
a task to move a part, but if it encounters a different instan-
tiation of the same task schema, it still must request the pa-
rameters for the new task. If a coordinator needs the sub-
plans of an or plan, the client agent sends the required infor-
mation for all subpIans specifying its preferences for each.
The coordinator then chooses the most preferred subplan,
and in the case it must backtrack, it chooses the next most
preferred subplan. Once the coordinator finds a feasible so-
lution, modifications are sent to each agent specifying which
or subplans are blocked and where it must send and wait for
synchronization messages. An agent can alternatively send
summary information for the whole plan hierarchy up front,
for single tasks as they are requested, or for some number of
levels of expansion of the requested task’s hierarchy.

Communication cost is often measured in terms of num-
ber of messages, total amount of data, or a weighted function
of the two. Communication delay is one such function and
can be computed as ne+ a j b , where n is the number of mes-
sages sent; k! is the latency in seconds; s is the total size of
all messages; and b is the bandwidth in bytes per second. We
will use this function in our manufacturing examples.

number of messages
one at a time 9
two levels 4
all at once 3

Simple Manufacturing Problem
For the simple manufacturing problem first described with
propositional states, communication data in terms of num-
bers of messages and the size of each was collected up to
the point that the coordinator found the solution in Figure
5b. This data was collected for cases where agents sent sum-
mary information for tasks in their hierarchies one at a time,
two levels at a time, and all at once, The two levels include
the requested task and its immediate subplans. The follow-
ing table below summarizes the numbers and total sizes of
messages sent for each granularity level of information:

total size (bytes)
8708

10525
16268

Assuming that the Coordinator must wait for requested in-
formation before continuing its search and can request only
one task of one agent at a time, the coordination will be de-
layed for an amount of time depending on the bandwidth
and latency of message passing. The total delay can be cal-
culated as (n - 2) l f s /b . We use n - 2 instead of n because
we assume that the agents all transmit their first top-Ievel
summary information message at the same time, so three
messages actually only incur a delay of L instead o€ 31.

Figure 6 shows how the communication delay varies for
the three granularities of information transfer for a fixed
bandwidth of 100 bytes/second, When the latency is less
than 0.003 seconds, sending summary information for each
task in separate messages results in the smallest communi-
cation overhead. For latencies greater than 0.06 seconds,
sending the entire hierarchy is best; and in between send-
ing summary information two levels at a time is better. Fix-
ing the latency at 0.01 seconds, we see the boundaries be-
tween the strategies in Figure 7 where communication delay
varies with bandwidth. When the bandwidth is less than 37
Kbytes/second, sending one at a time is best. Sending it all
at once is only best for very high bandwidths. For moder-
ately high bandwidths, sending two levels at a time is best.

However, no matter how data is sent, only a half second
could be saved at most, which is certainly insignificant for
the domain. This simple scheduling problem was solved us-
ing 1.23 cpu seconds, so the difference is actually a signifi-
cant percentage. More realistic problems involving the man-
ufacturing domain could have much Iarger hierarchies and
require much larger amounts of data to be sent and commu-
nication overhead.

Larger Example Problem
We next coordinate three production managers with the fa-
cilities and inventory manager. AI1 agents schedule using
metric resources as described in the section on Summary In-
formation. In this domain, there are three transports, six ma-
chines, and seven part types. Some parts are raw materials,
others have combination rules for production, and machines
are capable of producing different subsets of parts. For ex-
ample, for 32. number of C and 22 D parts, 2 E parts can be
produced.

The production managers have plans to produce two
batches of parts with optional decompositions (e.g. produce
20 C and either 30 E or 10 G). Their plans also branch on
machine choices. Although there is only moderate branch-
ing, the hierarchy depth is 12, and there are 14 leaf actions.
The inventory manager move four loads of parts back and
forth from storage and the dock. The facilities manager must
service all machines in any order. The inventory manager’s
plan has a depth of 12 with 42 leaves. The facilities man-
ager’s plan has a depth of 9 and 12 leaves. All leaf actions
use shared resources.

The coordinator resolves conflicts in 2.8 to 3.2 cpu sec-
onds. The resulting solution is found at about half the depth
of the agents’ hierarchies. The following table lists the num-
ber of messages sent and the total data transfer size for each
communication case. (Note that protocol for transmitting
summary information does not affect search-it only delays

1

one at a time
two levels
all at once

0.8

number of messages total size (Kbytes)
52 55.22
15 73.43
5 527.34

1 I 1 1 I
one at a time __
hvo at a time -------

all atonce - - - - - - -

0.2

0
0.01 o m 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Latency (s)

Figure 6: Simple problem: delay of communicating at different granularities with varying latency

I I

10 20 30 40 50 60 70 80 90 io0
Bandwidth (Kbylesis)

Figure 7: Simple problem: delay of communicating at different granularities with varying bandwidth

small, there is no significant difference between sending
each action separately or sending two levels of the hierar-
chy in each message. However, the intermediate granular-
ity approach saves three to more than 10 seconds compared
to sending the entire hierarchies at the start (for the plot-
ted ranges). This completely dominates the cpu processing.
WhiIe 10 seconds may not be important for scheduling hours
of factory operation, clearly the problems can be much larger
and involve greater decentralized decision making in back-
tracking, resulting in retransmitting parts of the hierarchy.

10

a -

-
I
01

0 1 I I I , I I I I 1
001 002 003 0 0 4 0 0 5 0 0 6 007 003 009 0 1

Latency (s)

I 1 , 1 ,
one at a time ~

two at a time - - - -~--
all at once

Figure 8: Larger problem: delay of communicating at different granularities with varying latency

one at a time
k levels

Analysis and Discussion
For three agents, a branching factor of 3, depth 10, a solution
found at level 5; and 1 Kbyte of summary information for
any task, the table would look like this:

Hypothetical case
I number of messages 1 total size (Kbytes) I

number of messages totai size
0 (rn bi) O(rnibd)

~~

milk

oneat atime I 363 1 1.01
two levels I . 9 1 3.28 . - . - . - ._ - ~~

I

all atonce 1 3 1 246.03

Without considering a particular communication cost
function, it is evident that sending plan information at in-
termediate levels of abstraction will often provide a more
efficient alternative to the extremes represented by the first
and last rows of the table.

Suppose that m agents’ hierarchies had a common
branching factor b and depth d. If tasks generally had con-
straints on similar resources throughout the hierarchies, the
amount of summary information derived for the tasks at par-
ticular IeveIs would grow exponentially down the hierarchy
just as wouid the number of tasks (Clement et ai. 2001). If
the agents agreed on a feasible solution at depth level i in the
hierarchy, then the table for messages and size would appear
as follows:

General case
number of messages total size

one at a time
IC levels
all at once

The first row shows that as the hierarchies scale, the num-
ber of messages grows exponentially when sending task in-
formation as it it requested. The last row shows that the total
data sent grows exponentially. The middle row shows that

the exponent on message number can be avoided, and the
exponent on the total data can be mitigated when k is cho-
sen small compared to d. The exponent is i + k - 1 because
there is a risk of sending more information than is required.
This is shown in the previous table where k = 2 forcing six
levels (5+2-1) of data to be sent when the solution is found
only five levels deep. Note that if an agent sends I; levels of
the hierarchy, only the deepest level needs to be summarized
because the other levels can be summarized by the receiving
agent.

These observations assume that the size of summary in-
formation grows exponentially at lower levels of the hier-
archy along with the numbers of tasks. As discussed in
(Clement et al. 2001), this happens when different tasks in
the hierarchy have constraints on similar resources causing
constraints to collapse during summarization. If they do not,
then summary information does not shrink at higher levels-
the data size is O(bd) at each level, so all messages are size
O(bd):

In this case communication is minimized by sending the
unsummarized hierarchy at the beginning of coordination.
(The agent(s) receiving the plans can summarize them for
planning efficiency once they are received.

Another assumption is that the solution will be found at
an intermediate level of decomposition. If acceptable so-
lutions are usually found near the top level, then summary
information should only be sent when requested:

Solutions found at top-level

I I 8 I ._ 1 I I I

all at once

one at a time -
two at a fime -1---_-

10

one at a time
t levels
all at once

I I 1 I I I I I

Bandwidth (Kbyleds)

Figure 9: Larger problem: delay of communicating at different granularities with varying bandwidth

O(rnG) O(mbd>
O(rnd/k) O(mbd>

O(m) O(rnbd)

If acceptable solutions are only found at the bottom of the
hierarchy, then sending summary information will increase
overhead, so the hierarchies should be sent at the beginning:

Solutions found at bottom-level
I number ofmessages I totalsize I

- pick IC small with respect to d, and
- experiment with variations of t in simulation and as-

The Iast case is only a “strawman” suggestion. Certainly,
there are other schemes alternative to sending a fixednumber
of levels. For example, decreasing k during search could
minimize the risk of sending levels deeper than the desired
solution. k might be tailored to the mean and variance of
solutions or many other factors, including the cost function.

sign best.

The followrng procedure based on domain testing can be
used for determining how to send summary information effi-
ciently. The output is k, the granularity (number of Ievels) of
communicating details of the hierarchy. This can be deter-
mined separately for each agent since the depth of soIution
in one agent’s hierarchy could be independent from those of
others.

0 if summary information does not collapse up the hierar-

0 if solutions only exist at the bottom of the hierarchy,

0 else if sohtions are always found at the top-level or
0 if the cost is only determined by the total data size,

chy or

- k = d .

- k = 1 .
0 else if the cost is only determined by the number of mes-

sages,

else
- k = d .

Conclusion
It is intuitive that agents that reason about their plans at ab-
stract levels should communicate less than those that reason
at detailed levels in their plans. Instead of merely demon-
strating that point, this paper identified how communicating
abstract information at different granularities can make an
exponential difference in performance. We showed through
an example of a simple manufacturing domain that commu-
nication delay in modern networks can be the performance
bottleneck for pIan coordination if plan information is not
communicated at appropriate levels. We presented a method
for choosing appropriate levels based on domain chasacter-
istics.

References
Clement, B ., and Durfee, E. 1999. Theory for coordinating
concurrent hierarchical planning agents. In ?roc. AAAI,

Clement, B ., and Durfee, E. 2000. Performance of coordi-
nating concurrent hierarchical planning agents using sum-
mary information. In Proc. ATAL, 213-227.
Clement, B.; Barrett, A.; Rabideau, G.; and Durfee, E.

49 5-5 02.

2001. Using abstraction in planning and scheduling. In
Proc. ECP, 145-156.
Clement, B. 2002. Abstract Reasoning for Mulfirlgent Co-
ordination and Planning. Ph.D. Dissertation, University of
Michigan, Ann Arbor.
Erol, K.; Hendler, J:; and Nau, D. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, University of Maryland.
Knoblock, C. 1991. Search reduction in hierarchical prob-
Iem solving. In Proc. AMI, 686-69 1.
Korf, R. 1987. Planning as search: A quantitative ap-
proach. A rtijcial Intelligence 3 3 :65-8 8.

