Seeing in Three Dimensions: Correlation and Triangulation of Mars Exploration Rover Imagery
IEEE SMC 2005

Bob Deen
Jean Lorre

Multimission Image Processing Laboratory
Jet Propulsion Laboratory
California Institute of Technology
Overview

• Correlation Process
• XYZ Derivation Process
• Results
• Future Work
Goal
Terrain Derivation

- Principal Steps
 - Acquire the stereo images [Maki]
 - Correlate stereo pairs to determine matching features and disparity
 - Triangulation of disparity and camera models to determine spatial XYZ coordinates of each pixel
 - Conversion of XYZ coordinates to integrated terrain mesh [Wright]
 - Creation of ancillary products (reachability, slope) [Leger]
- Managed by MIPL pipeline [Alexander/Zamani]
What is Correlation?

- For each pixel in one image (reference, or left)
 - Find matching pixel in the other (right) image
 - Uses an area-based search
- Difference in coordinates is called disparity
 - Directly relates to distance from the viewer
Correlation Coefficient

- Standard correlation coefficient:
 \[\rho = \frac{\sigma_{ts}}{\sigma_t \sigma_s} \]
 - Covariance / product of standard deviations
 - Measure of similarity of areas
 - \(\rho = 1 \) for perfect match, 0 for none, -1 for inverse match
 - More computationally efficient form:
 \[\rho = \frac{n^2 \sum ts - \sum t \sum s}{\sqrt{(n^2 \sum t^2 - \sum t)(n^2 \sum s^2 - \sum s^2)}} \]
- Other measures are possible
Geometric Warping

- Template does not exactly match right area
 - Geometry of scene affects the mapping

Top view
(world is flat plane)

Template

Images

Area matching template in right image
Geometric Warping (cont.)

- Bilinear transform warps right image to match left

 \[x' = ax + by + c + gxy \]
 \[y' = dx + ey + f + hxy \]

- Only a subset of parameters used
 - \(b, c, f, g \) for most cameras
 - Translation, shear, trapezoid in \(x \)
 - Translation in \(y \)
 - Models aligned cameras looking out at a flat plane
 - \(a \) added for front hazcams
 - Scale in \(x \)
 - Models aligned cameras looking at a more general scene
Function Minimization

• Goal: find best match of template
 – Maximize correlation coefficient ρ
 • Actually, minimize $2.0 - \rho |\rho|$
 – Warping terms $a-h$ are the free parameters

• “Amoeba” minimization used
 – Downhill simplex method
 – No partial derivatives required
 – Somewhat slow
 – Requires reasonably close starting point to avoid local minima

• Translation terms (c,f) represent disparity
 – Other terms discarded after match found
Seed Points

• Starting points for amoeba
• Two methods to gather them
 – Use 1-D correlator from flight software
 • Epipolar alignment required (features on same line)
 • Must use downsampled images
 – 4x, 8x, or 16x, depending on type
 • Used operationally
 – Estimate disparities from camera and surface models
 • Epipolar alignment not required
 • Also uses downsampled images
 • Used for photometry cubes (science processing)
Remaining algorithm

- Progressive image pyramids
 - Increase size 2x at each pass until full res reached
 - Each pass provides seed points for next pass
- 3x3 box filter used
 - Reduces noise at expense of resolution
- Filling gores
 - Postprocessing step after each pass
 - Finds uncorrelated pixels, uses neighbors for seeds
 - Fills in small gaps
Image Triangulation

• Converts disparities to XYZ locations
• Requires camera models
 – Describe relationship between line/sample coordinates in image and the corresponding ray in 3-D space
 – CAHV family of camera models
 • CAHV: linear
 • CAHVOR: radial optical distortion
 • CAHVORE: generalized fisheye lens
• Steps
 – Find matching pixels via disparity map
 – Project rays through camera models to 3-D space
 – Intersection point of rays is XYZ point
 • Actually, midway between the rays’ closest approach
 • Miss distance is called the error
Rejecting Invalid Points

- Nine filters used to remove bad points from result
 - Correlation match must exist
 - Vertical disparity must be < 4 pixels
 - Vertical disparity must be within 0.75 pixels of average over 51x51 pixel area
 - XYZ intersection must be computable (not parallel)
 - Absolute miss distance must be < 0.05 meters
 - Miss distance/range must be < 0.005 meters/meter.
 - Computed Z values must be within limits (-20,+20 meters for Opportunity, -40,+20 for Spirit)
 - Rays must not diverge
 - Range must be within 1000 times the camera baseline
Speed

- Great improvement from Mars Pathfinder
 - 1 hour for 256x256 -> 2-4 minutes for 1024x1024
- Four critical parameters
 - Template size
 - Large == slower, but more accurate
 - Warping parameters $a-h$
 - All would be nice, but each adds significant speed penalty
 - Gore-filling passes
 - Inefficiently implemented
 - Diminishing returns
 - Tolerance parameter
 - Tells amoeba how hard to work;
 - Lower == more precise but much slower
Accuracy

• Very hard to measure
 – Spot (target) tests validate XYZ range
 • Spots easy to correlate
 – Generate pseudo-left image by projecting through disparity map
 • Hard to see subpixel errors
 – Manual spot checks
 • Hard to see subpixel errors
 – Artificially-generated imagery
 • Not representative of real-world performance
 – Relative comparison between correlator runs
 • Helps with speed vs. accuracy tradeoffs

• End-to-end tests show accuracy sufficient for ops
 – Can it be improved?
Compression Noise

- Primary source of error
 - Patchiness in the output
 - Correlator constrains allowable compression rates
 - 9 bpp (left) vs. 0.5bpp (right)

Seeing in Three Dimensions: Correlation and Triangulation of MER Imagery
IEEE SMC, Oct. 10-12, 2005, Waikoloa, Hawaii, USA
Anti-Integer Bias

• Subpixel results in the presence of noise are biased away from integer values, toward half-integer values
 – More noise results in more pronounced effect

• Self-correlation with noise introduced
 – Histogram plot of vertical disparity + line number
Anti-Integer Bias (cont.)

noise = 5 DN
noise = 10 DN
noise = 20 DN
noise = 30 DN
noise = 200 DN
Anti-Integer Bias (cont.)

- Believed to be due to bilinear interpolation
 - Performed as part of geometric warp
 - Interpolation smooths the noise
 - Smoother noise is easier to match
 - Maximum interpolation (and thus smoothing) at half-integer

- Possible solutions
 - More degrees of freedom in warp
 - Causes interpolation even at integer values
 - Larger windows
 - Increase signal-to-noise ratio
 - Different interpolation algorithms
 - Not yet investigated
Inappropriately Correlated Areas

• Correlation results in bad places
 – Sky
 – Horizon
 – Undifferentiated terrain
 – Noise

• Most problematic issue operationally
 – Produces artifacts in terrain mesh

• Horizon mask used to trim sky/horizon
 – Stopgap measure
Future Directions

• Avoid bad spots in sky, sand, etc.
 – Interest operator
 – Heuristics
 – Compression knowledge

• Checking via right->left correlation
 – Cost/benefit ratio not high at the moment

• Handling compression noise
 – Different interpolation
 – Recognize noise regionally via compressor metadata

• Areas with different depths (rock edges)
 – Adaptive windows
Long-Baseline Stereo

• Move rover to obtain long (~10m) baseline

• Work in progress
 – Results not calibrated yet
 • Slopes, etc. still useful despite that
 – Shows promise for long-term planning
 – Can get useful results >1km away
Long-Baseline Stereo (cont.)
Conclusion

• Results are accurate and reliable enough for Mars remote ops
 – Almost 2 years on each rover (!)

• Image compression noise is biggest problem
 – Imposes constraint on allowed compression rates
 • And thus mission data volume

• Still many avenues for improvement
Questions

- Bob.Deen@jpl.nasa.gov