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ABSTRACT

Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter
regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple
scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5×103

m−3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves.
In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing
effects. While the differences from the plane wave results are not great when the optical thickness is small, as
the latter increases the differences become significant, and essentially depend on the ratio of radar footprint
radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the
mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less
pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account
when analyzing radar reflectivity factors for use in remote sensing applications.
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1. INTRODUCTION

Millimeter-wavelength weather radars have been extensively used to increase accuracy of measuring hydrometeor
number densities (e.g. raindrops, liquid-cloud particles). In this frequency regime, multiple scattering effects
become important so as to be taken into account when using radar reflective intensity in retrieval algorithms of
hydrometeor density. The occurrence of multiple scatterings was confirmed in 35 GHz radar measurements by
the presence of depolarized signals reflected from spherical rain drops.1, 2

From the early 1970’s to the early 1990’s, multiple scattering in randomly distributed particles was intensively
studied through the analytical method of electromagnetic wave.3–7 In the course of study, two main contributions
of multiple scattering to reflective intensity were revealed as follows: The electromagnetic field reflected from
random media can be represented as a sum of fields from many portions of the media. Among this sum, only
pairs of fields that have strong correlation can give contributions to a measured intensity. A first possible pair is
constituted of a field EA and its self-complex-conjugate field E∗

A as depicted in Fig. 1a in the case of the second
order scattering. In the figure, the field EA is transmitted from the antenna T, and scatters at point b and a
successively, eventually returning to the antenna T. This scheme can be represented by the second order ladder
diagram shown in Fig. 1b, and hence referred to as second order ladder term. Another possible pair occurs in
the backscattering condition depicted in Fig. 2a, in which the field EA travels in the same path as that in Fig.
1b, while the conjugate field EB , starting from the transmitting antenna T, scatters first at point a and second
at point b, eventually returning to the receiving antenna R. Since the fields EA and EB have the same path
lengths, the correlation 〈EAE∗

B〉 gives a finite value even for randomly distributed points a and b. This ray path
of EB is referred to as the time-reversal path of EA. It is noted that the time reversal condition is satisfied only
for the backscattering condition. As easily seen for the case of non-zero bistatic scattering angle, the fields EA

Further author information: (Send correspondence to Satoru Kobayashi)
E-mail: satoru@radar-sci.jpl.nasa.gov, Telephone: 1 818-393-0824



and EB have different path lengths, and random distributions of particles a and b will cause strong decorrelation,
generally giving negligible contribution to the measured intensity. This is the reason we refer this additional
contribution to intensity as backscattering enhancement. Regardless of the value of bi-static scattering angle,
this conjugation scheme can be represented by the second order cross diagram depicted in Fig. 2b. In general, the
ladder terms, such as shown in Fig. 1b, were proven to be equivalent to the multiple scattering terms calculated
through the radiative transfer theory.3

For millimeter wave length radars, we can neglect the reflection from two-particle-correlation carried by
turbulence.8, 9 Thus in this paper, the incoherent scattering from each particle will be considered exclusively.
For this incoherent scattering, backscattering enhancement was studied as a scalar theory in 5, 6, 10–13 and as
a vector theory in 14–20. Numerical simulations for the vector theory were found in 21, 22. Among these vector
theories, the perturbation theories14, 15, 18–20 can be considered more appropriate for hydrometeors due to its
small volume fraction of scatterers of order of 10−5, comparing with the diffusion theories.16, 17 Especially, two
formalisms of Mishchenko19, 20 and Mandt et al.14 are advantageous so as to have the explicit forms of scattering
amplitude matrix in position-space representation. The former formalism includes all the contributions of ladder
and cross terms, and seems to suit for numerical simulation, but not for analytical expression. The latter, on the
other hand, includes at most the second order terms, but it can give an analytically simple form for a system
of a finite layer thickness. Furthermore the second order theory can be considered to be sufficient for a dilute
system such as hydrometeors as mentioned in 1, 2.

In all the previous theoretical works, a plane wave is injected to randomly distributed particles, and the
reflected wave is collected by a receiver at infinite range. On the other hand, in remote sensing, a spherical wave
with a finite beam width, usually approximated as a Gaussian antenna pattern, is injected, and the reflected
wave is received by an antenna at a finite range. For the single scattering, the plane wave theory can be applied
to the spherical wave of a finite beam width with slight corrections concerning to range and gain, as will be
also shown in this paper. While for multiple scattering, it is not appropriate to adopt the plane wave theory as
it is, because a finite size footprint can be considered to give a smaller reflectivity than the plane wave theory
predicts, especially when the footprint size is much smaller than the mean free path of an illuminated body. The
mean free path in a layer of hydrometeors often reaches of the order of 1000 meters for millimeter-wavelength
wave, while typical foot print sizes are of order of hundreds meters. In this study, a time-independent multiple
scattering theory is formulated for a spherical wave along with a Gaussian antenna pattern, based on the plane
wave theory of Mandt et al.14 Our analysis considers only a single layer of spherical water particles of a uniform
diameter and a uniform number density.

2. FORMALISM

In this section, the formalism of Ishimaru, Tsang and Mandt10, 14 is expanded to a spherical wave with a finite
beam width represented by a Gaussian function. To deal with complication introduced by the finite beam width,
further simplifications of integrals are performed for the second order ladder and cross terms.

We shall consider a single layer of hydrometeors of thickness d, constituted of spherical water particles of a
uniform diameter D and a uniform density N0. To illustrate the backscattering enhancement, at first a bistatic
radar is considered by assuming a small value of scattering angle θs, and later the formula for monostatic radar
is derived by taking a limit of θs → 0. A 3-dB beam width θd and a range rs are assumed to be |θd| � 1 and
rs � d, respectively. When a radar of its center gain G0 at a wavelength λ transmits a power of Pt with an
initial polarization vector ψ0 in an incident direction k̂i, the first order scattering in a direction k̂s(≈ −k̂i) can
be represented by calculating the first order ladder term:
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in which the transmitting and receiving ranges have been assumed to be nearly equal. F (k̂2, k̂1) denotes the

scattering amplitude matrix from the directions k̂1 to k̂2. The summation over unit vector α̂ is taken over a



complete set of polarizations such as the H and V directions. The absorption rates along the layer thickness are
defined for the incident and scattered waves respectively:

κ
′′

iz = −κe/2cosθi (2)

κ
′′

sz = κe/2cosθs (3)

where θi and θs are the incident and scattered polar angles. The extinction rate κe is calculated through the
Foldy-Twersky formula

κe = Im
[

4πN0k
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]

(4)

in which k denotes the wavenumber. The footprint 3dB radius σr can be defined as

σ2
r = r2

s θ2
d/23ln2 (5)

Using the diagram of Fig. 1b, the second order ladder term for the finite beam width is calculated in the
form of
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In Eq. 6, the integrals over η ≡ tanθ and ϕ concern to the polar coordinates of the directional variable r̂ that is
defined inside inside the argument of the scattering amplitude matrix F . The other integral over ζ ≡ za − zb is
related to the relative coordinates of the direction of layer thickness.

The second order cross term for the finite beam width can be derived through the diagram of Fig. 2b in the
from of
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in which the deviation vector kd from the backscattering direction and the new variable t have been introduced
based on Ishimaru and Tsang10:

kd = k (k̂s + k̂i) ≡ kdxx̂ + kdy ŷ + kdz ẑ (8)

t ≡ kdxη cosϕ + kdyη sinϕ (9)



3. RESULTS AND DISCUSSION

Multiple scatterings including backscattering enhancement can be considered to effectively increase radar reflec-

tivity. When hydrometeors consist of spherical particles, the first order ladder term I
(1)
L has only the copolarized

component, i.e. I
(1)
L = I

(1)
L (CO). Furthermore I

(1)
L is almost constant in the vicinity of θs = 0 (θs < 0.3 degree),

within which the backscattering enhancement occurs. For this reason, the intensity of a multiple scattering term

will be normalized by I
(1)
L to be converted to an effective reflectivity in the rest of paper. For instance, the

second order ladder reflectivity in copolarized component denoted by Lco
2 precisely means I

(2)
L (CO)/I

(1)
L .

The sums of only the second order terms Lco
2 + Cco

2 in copolarization and Lcx
2 + Ccx

2 in cross-polarization are
plotted with the solid and dashed lines respectively in Fig. 3 as functions of the foot print radius normalized by the
mean free path l0 = κ−1

e , (i.e. σr/l0) to exclude the effect of the first order ladder term that is constant for σr/l0.
Since the monostatic radar is our main concern, only the backscattering θs = 0 will be considered hereinafter.
Spherical water particles of a uniform diameter D = 1 mm with a particle number density N0 = 5 × 103 m−3

are used for calculation along with a frequency of 95 GHz, which gives the mean free path l0 = 77.2 m. Figure
3 shows that the reflectivities rapidly decrease in the region σr/l0 < 1, while these are almost constant in the
region σr/l0 > 2.

In Fig. 4, the terms Lco
2 + Cco

2 (solid lines) and Lcx
2 + Ccx

2 (dashed lines) are plotted as a function of optical
thickness τd = d/l0 for several values of normalized footprint radius σr/l0. Here, only the frequency of 95 GHz
and the particle diameter D = 1 mm are fixed. Since the mean free path l0 is uniquely defined for an arbitrary
particle density N0, the value of τd is changed by varying the physical layer thickness d. Using Fig. 4, we can
determine reduction factor from the plane wave theory (i.e. σr/l0 = ∞) for the particle diameter D = 1 mm,
and given a footprint radius σr, a layer thickness d, and a particle number density No. Figure 4 also indicates
that the plane wave theory can be applied to a smaller value of σr/l0, as the optical thickness decreases. For
example, at a large optical thickness τd = 4.0, the values of Lco

2 + Cco
2 (Solid lines) are -1.89 dB and -2.39 dB for

σr/l0 = ∞ and σr/l0 = 1 respectively. These values reduce to -11.49 dB and -11.58 dB respectively at a small
optical thickness τd = 0.05. Hence the difference in Lco

2 + Cco
2 between σr/l0 = ∞ and σr/l0 = 1 is given by 0.50

dB at τd = 4, which reduces to 0.09 dB at τd = 0.05. In short, the curve of σr/l0 = ∞ approximately coincides
with the curve of σr/l0 = 1 at τd = 0.05. Thus the plane wave theory can be applied for the footprint radius
σr/l0 = 1 at a small τd = 0.05.

4. CONCLUSION

In this paper, a vector theory, involving up to the second order scattering, has been studied for a finite footprint
radius along with a moderate single particle albedos (/ 0.5) and optical thicknesses (τd ≤ 4), although the
approximation is highly valid for τd / 2. As the optical thickness of the hydrometeor layer increases, the
differences from the conventional plane wave theory become significant, and essentially the reflectivity of multiple
scattering depends on the ratio of radar footprint radius to mean free path as shown in Fig. 4. For a single layer
of hydrometeors with a uniform diameter D, we can theoretically estimate the effect of multiple scatterings for
a finite footprint radius by making a corresponding figure to Fig. 4 for the given diameter D. Especially for the
Rayleigh regime, similarities of curve shapes in Fig. 4 hold, and the difference for D appears only in magnitude
proportional to D6, which makes calculation of Fig. 4 simpler. Although the dependence of the particle density
N0 does not appear explicitly in Fig. 4, it is implicitly included in the mean free path l0. Thus we still need
rough information on N0 and D, which may be obtained, for instance, through cooperation of a Ku-band radar
that has very little effect of multiple scattering. Once N0 and D are roughly given, the measured reflectivity in
cross-polarization is used to confirm the degree of multiple scattering, and the information from Fig. 4 redrawn
for the given D, in turn, gives correction for the multiple scattering in the copolarized reflectivity.

An issue to be considered in this paper is that all the formalism have been done under the restriction of a
single layer of spherical hydrometeors with a uniform number density N0 and a uniform diameter D. We can
extend the formalism of this paper to a more general shaped hydrometeors by adding integrals relating ensemble
averages of particle orientations as well as drop size distribution. Preliminary results expanded to a single layer
of hydrometeors with the Marshall-Palmer distribution are shown in Appendix A.



The theory in this paper has been derived for continuous wave as a time-independent theory. However we
may extend it to a time-dependent theory to apply to a short pulsed radar. For a single layer of hydrometeors
composed of spherical particles, a convenient formula of the time-dependent radiative transfer theory was derived
as a second order analytical solution by Ito et al.1 Since the cross term behaves in a similar manner to the ladder
term for the backscattering within the second order theory, the backscattering enhancement can be involved in
the solution of Ito et al.1 by formerly multiplying the factor of 2 to its second order term. It is further noted
that their solution was derived for the plane wave. We therefore need to multiply the above-mentioned second
order term by the reduction factor arising from the finite footprint radius, which is obtained from Fig. 4 or its
counterpart extended to a more general drop size distribution of particles.

APPENDIX A. MULTIPLE SCATTERING WITH MARSHALL-PALMER
DISTRIBUTION

As a preliminary result, increments in reflectivity to single scattering intensity are plotted as functions of rain
rate (mm/hr) for the Marshall-Palmer distribution along with a frequency of 95 GHz in Fig. 5a, in which the
infinite footprint radius and a layer thickness of 100 m are assumed. Solid and dashed lines denote the total
increments in copolarized and cross-polarized reflectivities, respectively. The upper curves in each polarization
include backscattering enhancement, while the lower curves not. Figure 5a indicates that the increment in
copolarized reflectivity reaches over 1 dB for stratiform rains of 10 mm/hr.

In Fig. 5b, using the finite beam theory, the second order reflectivities in both polarizations are plotted as
functions of the normalized footprint radius σr/l0 for the rain rate of 10 mm/hr corresponding to the mean free
path l0 = 528 m. The same layer thickness as Fig. 5(a) is used. Since the values at σr/l0 = 4 can be regarded
approximately as the values at σr/l0 = ∞, we can retrieve the reflectivities (Lcx

2 +Ccx
2 , 1+Lco

2 +Cco
2 ) in Fig. 5a

at rain rate 10 mm/hr, directly from the value of Lcx
2 +Ccx

2 in Fig. 5b for cross-polarization, while by calculating
1 + Lco

2 + Cco
2 from the value of Lco

2 + Cco
2 in Fig. 5b for copolarization.
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Figure 1. Second order ladder term. An incident field EA emits from the antenna T, and scatters at points ’b’ and ’a’
successively in the random media, returning to the antenna T. (a): Geometry. (b): Diagram.



Figure 2. Second order cross term. An incident field EA takes the same path as in Fig. 1b, while the conjugate field EB

emits from the antenna T, and scatter at points ’a’ and at ’b’ successively (i.e. time-reversal path of EA), returning to
the antenna T. (a): Geometry. (b): Diagram.

Figure 3. The reflectivity Lco
2 + Cco

2 in copolarization (solid line) and the reflectivity Lcx
2 + Ccx

2 in cross-polarization
(dashed line) as functions of the normalized footprint radius σr/l0 for the backscattering θs = 0. Spherical water particle
of diameter D = 1 mm and particle number density N0 = 5× 103 m−3 are used, which give the mean free path l0 = 77.2
m



Figure 4. The reflectivity Lco
2 + Cco

2 in copolarization (solid lines) and the reflectivity Lcx
2 + Ccx

2 in cross-polarization
(dashed lines) as functions of the optical thickness τd for the backscattering θs = 0. Hydrometeor diameter is set at D = 1
mm. Particle number density N0 is arbitrary. The parameters of footprint radius σr/l0 are set at ∞, 1, 0.5, 0.2 and 0.1
from top to down. The differences of finite footprint radius (σr/l0 = 1 - 0.1) from the plane wave theory (σr/l0 = ∞)
reduce, as τd decreases.

Figure 5. (a)Increments in total reflectivities as functions of rain rate (mm/hr) for Marshall-Palmer distribution. Fre-
quency 95 GHz and a layer thickness of 100 m are assumed. Solid and dashed lines correspond to copolarization and
cross-polarization, respectively. (b)Second order reflectivities as functions of the normalized footprint radius σr/l0 for a
rain rate of 10 mm/hr. The same layer thickness as (a) is used. The solid and dashed lines correspond to copolarization
and cross-polarization, respectively.


