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Abstract- At JPL and NASA, a process has been 
developed to perform life cycle risk management. This 
process requires users to identify: goals and objectives to be 
achieved (and their relative priorities), the various risks to 
achieving those goals and objectives, and options for rislc 
mitigation (prevention, detection ahead of time, and 
alleviation). Risks are broadly defmed to include the risk of 
failing to design a system with adequate performance, 
compatibility and robustness in addition to more traditional 
implementation and operational risks. The options for 
mitigating these different kinds of risks can include 
architectural and design choices, technology plans and 
technology back-up options, test-bed and simulation 
options, engineering models and hardware/software 
development techniques and other more traditional risk 
reduction techniques. 

Each of these risk mitigations has resource costs associated 
with them. The sum of all these mitigations is almost 
always unaffordable. Furthermore, fhere may be a variety 
of other constraints (mass, power, h d i n g  profile, 
leveraged programs, etc.) that fkther constrain acceptable 
selections. The challenge is therefore to emerge with an 
“optimal” selection of mitigations that makes best use of 
available resources to reduce risk to the fkllest extent 
possible. 

For non-trivial design spaces, the search space of possible 
selections is huge. This precludes exhaustive search for the 
optimum, and therefore necessitates the adoption of 
heuristic search techniques. At JPL, we have explored 
application of several heuristic techniques for searching for, 
and refining, collections of risk mitigations, notably 
genetic algorithms, simulated annealing, and machine 
learning. The results of research and pilot applications of 

these techniques for finding best combinations of life cycle 
risk management solutions are discussed. 
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1. DDP’S RISK MANAGEMENT PROCESS 

This section summarizes the risk management process that 
we have developed and applied at JPL and NASA. 

Defect Detection and Prevention (DDP) is the risk 
management process that we have developed and applied to 
risk assessment, risk mitigation planning, and lifecycle risk 
management [l]. The primary purpose of DDP is to help 
expert users plan the design and development of complex 
systems. Risk management is central to their successful 
development, deployment and operation. Custom tool 
support [2] fiicilitates the practical application of the DDP 
process. 

DDP explicitly represents risks, the objectives that risks 
threaten, and the mitigations available for risk reduction. 
By linking these three concepts, DDP is able to represent 
and reason about the cost-effectiveness of risk reduction 
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alternatives. In more detail, the DDP representation 
includes: 
Objectives - the requirements, goals and objectives that 
the system is to achieve. Each of them has a ‘%eight” 
representing its relative importance. 
Risks - all the possible things that, should they occur, 
would detract IYom attainment of the Objectives. It is 
important to realize that in applying DDP, this category of 
information is quite broad. For example, DDP uses Risks to 
encompass design risks (fitiling to design a system with 
adequate performance, compatibility and/or robustness) in 
addition to more traditional implementation and 
operational risks. 
Mitigations - all the possible activities that, if they are 
performed, will reduce risk. Again, DDP uses this category 
of information very broadly. For example, DDP uses 
Mitigations to encompass architectural and design choices, 
technology plans and technology back-up options, test-bed 
and simulation options, engineering models and 
hardware/sofhvare development techniques in addition to 
more traditional risk reduction techniques. Mitigations 
have costs - the resources it takes to apply them. These 
might include monetary, schedule, physical resources (e.g., 
mass, power), facilities (e.g., test equipment), etc. 
lmpacts - each of these quantifies the extent to which a 
risk, should it occur, detracts &om the attainment of an 
objective. Effects - each of these quantifies the extent to 
which a mitigation, should it be applied, reduces a risk. 

2. OPTIMIZATION NEEDS 
In the JPL and NASA setting, spacecraft systems are the 
focus. We have applied DDP to help plan the development 
of individual technologies (both hardware and software) for 
use on spacecraft, and, in ongoing work, are using DDP to 
help in the planning for an entire spacecraft. 

The primary purpose of DDP is to assist users to cost- 
effectively select risk mitigations. Each mitigation has 
resource costs. The sum total cost of all these mitigations is 
almost always unaffordable. Furthermore, there may be a 
variety of other constraints (mass, power, &ding profile, 
leveraged programs, etc.) that fiirther constrain acceptable 
selections. The challenge is therefore to emerge with an 
“optimal” selection of mitigations that makes best use of 
available resources to reduce risk to the lllest extent 
possible. 

In these applications, objectives, risks and mitigations are 
numerous, and highly interlinked, making optimization a 
challenge. To convey the magnitude of this challenge, the 
topology of the DDP information for a recently concluded 
study of a packaging technology is shown in Figure 1. The 
study gathered 50 Objectives, 31 Risks and 58 Mitigations. 
In the figure, the Objectives are shown as small blue 
squares in the row across the top, the Risks as small red 
squares in the row across the middle, and the Mitigations 
as small green squares in the row across the bottom are the 
Mitigations. The lines connecting these indicate the 
presence of the lmpacts (between Risks and Objectives) and 
Effects (between Mitigations and Risks). This is just the 
topology - there is further quantitative information is 
shown on this diagram, most importantly the strengths of 
these Impacts and Effects, nor the relative weights of the 
Objectives. 

For non-trivial DDP applications, the search space of 
possible selections is huge. For example, in the application 
whose data is pictured in Figure 1, there are 58 individual 
mitigations, so the number of possible selections of such is 
2” (approximately IO1*). In other DDP applications, 
numbers of mitigations have been comparable, or even 
greater, with correspondingly Iau-ger search spaces. This 
makes cost-effectively selecting mitigations a considerable 

Figure 1 - The Linked Structure of Information in a Typical DDP Application 
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challenge. What is needed is the ability to automatically 
optimize selection of Mitigations, as called for in [3]. 

In response, we have been investigating the use of heuristic 
search techniques. These have the capacity to locate near- 
optimal solutions in such huge search spaces. In the DDP 
setting we have experimented with three different kinds of 
heuristic search techniques: genetic algorithms, machine 
learning, and simulated annealing. These are discussed in 
detail in the sections that follow. 
3. GENETIC ALGORITHM EXPERIMENTS 
Our initial experiments were with Genetic Algorithms used 
to search for DDP risk-minimizing solutions for a given 
cost ceiling. 

The core idea of Genetic Algorithms is to work with a 
population of candidate solutions. This population is 
allowed to evolve in a series of steps. In each step, the 
better solutions, and variations of them, are preferentially 
favored in populating the next generation. Various forms of 
“mutations” are used to generate those variations. 

In a DDP application, a candidate solution is represented as 
a vector of Booleans, one for each of the Mitigations of that 
application. The Boolean is true if the Mitigation is to be 
selected for application in the solution, hlse otherwise. A 
population of solutions is thus a set of such vectors. DDP 
calculates the risk for a given solution by summing the 
impact of the Risks on the weighted Objectives, taking into 
account the risk-reducing effects of the Mitigations selected 
by that solution. This risk measure is used as the score for 
the Genetic Algorithm (where lower risk is better). 

To apply Genetic Algorithms, we devised a way to generate 
mutations &om a given solution such that those solutions 
would each €all within the prescribed cost ceiling. In 
generating the next generation of candidates fi-om the 
current generation, the better-scoring solutions of the 
current generation were allowed to contribute more such 
(cost-capped) mutations to the next generation. Ova a 
series of generations, the search would tend to discover 
better solutions, i.e., selections of Mitigations whose total 
costs remained below the cost ceiling, and whose risk- 
reducing effects were superior. 

The experiments with this approach demonstrated the 
following strengths and weaknesses: 

Genetic Algorithm: Application Strengths 

Rapid Progress - the algorithm made rapid progress at 
finding much improved solutions. This held true for quite 
large DDP datasets. We observed this in experimenting 
extensively with data from a relatively large DDP 
application, one that had 99 Mitigations from which to 

select. 

We attribute this performance to the work we put into 
generating mutations (of solutions in the current 
generation) that remained within the cost ceiling. This 
considerably reduced the search space to just those 
Mitigation selections that exhibited the required cost 
characteristic. 

This effect became even more pronounced when we took 
into account additional constraints on costing. These 
constraints arose in the context of planning risk mitigation 
for a long-duration project. The project not only had a 
constraint on the sum total cost for the project as a whole, 
but also a constraint on the sum total cost within each time 
phase (financial year). The additional constraints that this 
placed on solutions M e r  reduced the search space. We 
extended our mutation algorithm accordingly, so that it 
would generate those and only solutions that met all of 
these costs constraints. As a result, the performance of the 
Genetic Algorithm search was improved. 

Multiple Solutions - a desirable feature of the Genetic 
Algorithm approach is that in each step it calculates a 
multiple candidate solutions. This means that users can 
examine the better scoring solutions kom the final 
generation, and pick fkom among them. When there are 
several solutions that have close cost and risk scores, 
minimizing the risk is not necessarily the preferred way to 
narrow the choice to just one solution. Instead, users often 
wish to take other factors into account to guide their 
selection. 

Genetic Algorithm: Application FYeaknesses 

Optimize for Benefit (Least Risk) Only - the way we 
approached the use of Genetic Algorithms would not work 
to optimize for cost minimization at a given level of risk. 
This is because the calculation oif risk in a DDP model is 
much more convoluted than the calculation of cost. As a 
consequence, that generation of mutations to each fall 
below a risk ceiling is far harder than the generation of 
mutations to each fall below a cost ceiling. 

An alternative would be to allow mutation to generate 
solutions unconstrained by a benefit ceiling. During the 
population of the next generation &om the current one the 
risk measure would be taken into account - those current 
solutions that exceed the benefit ceiling would be scored as 
worse than those solutions thxt are within the benefit 
ceiling, regardless of cost. Unfor!xnately, this would detract 
fkom the rapid progress quality that our cost-capped 
approach exhibited. 

Hard to Maintain as DDP Cost Anode1 is Elaborated - the 
way we approached cost-capped generation of mutations 
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worked well with the mainstream DDP cost model. 
However, we have subsequently elaborated that cost model 
to better represent cost phenomena that arise in practice. 
Elaborating our mutation generation algorithm accordingly 
would be troublesome. 

r 

Each example: value & decisions 
009 

The key such elaboration of the DDP Cost Model is to 
handle repair costs - these are incurred by DDP mitigations 
that detect (rather than prevent or alleviate) risks. Their 
benefit comes fkom exposing the presence of risks, thus 
allowing for corrective measures to be taken prior to actual 
use of the system. The net result is that the operational 
system (in our case, the spacecrafi post-launch) is more 
reliable. However, two kinds of costs are incurred: the cost 
of performing the detection-style mitigation, and the cost of 
repairing the problems (if any) that it detects. The 
calculation of the expected repair cost depends on when it 
is done (repair costs typically escalate later in the life-cycle) 
and how likely it is that the risk will be present at the time 
the detection is performed. This likelihood in turn depends 
on what other mitigations have preceded it. Unfortunately, 
this intertwining of the cost calculation with the risk 
calculation renders generation of cost-capped mitigations a 
challenge, in much the way that generating risk-capped 
mitigations would be. 

TAR2 
(Memies) 

Prior to this elaboration of the DDP model we 
approximated the situation by ascribing appropriately high 
costs to the mitigations that we knew to be late-lifecycle 
detections. This approximation suffices in many of the 
decision-making challenges we tackle with DDP. However, 
the elaborated cost model’s more accurate representation of 
cost factors is desirable to have. For example, we have used 
it in example calculations of cost-benefit measures for 
alternative soRware quality practices - see [4] for details. 

Alternative 
sets of 
critical 

Tuning Genetic Algovithms’ Search - Genetic Algorithms 
oRen require tuning to get efficient search performance. 
While they offer a plethora of parameters for such tuning 

(e+, to control relative races of various kinds of 
mutations), we do not want to have to burden the DDP user 
with these choices. To date we have not performed 
experiments with on broad enough range of DDP 
applications to say how much of a problem this will be for 
us. We would have to address this issue were we to 
incorporate a Genetic Algorithm optimizer as part of DDP. 
Can’t Distinguish Cvitical +om Non-Critical Decisions - 
the recommended selection of mitigations that is the end 
product of a Genetic Algorithm run on a DDP application 
contains no indication of the relative importance of 
individual decisions. Lacking this infixmation, users do not 
know which of those decisions they can safely modify 
without severely compromising the quality of the solution. 
Of course, they can use the DDP tool to explore, making 
adjustments and studying the recalculated cost and benefit 
measures, but this is a tedious process at best. 

4. MACHINE LEARNING EXPERIMENTS 

Classical machine learning (e.g. C4.5 [Sj) can be applied to 
learn kom examples the implications between sets of 
decisions and results. For a model such as DDP, individual 
decisions are binary (which Mitigations to apply), and 
results are measures of cost and benefit (reduction of Risk, 
or equivalently, attainment of Requirements). However, as 
pairs, triples, etc., of individual decisions are considered, 
the numbers increase, and some of summarization is 
required. Our co-author Tim Menzies has pioneered the use 
of an approach that combines learning and summarization 
into one tool, his “TART’ system. We used in experiments 
on DDP applications. The approach and results are 
explained at length in [6]. Briefly, the way we combined 
DDP and TAR2 is sketched in Figure 2. 

DDP is used to generate a large number of examples, where 
in each example the Mitigations to apply are chosen at 
random. A given example’s information comprises the 
choices of selected Mitigations, and a score reflecting the 

~ ~ u t i o n / S u n r n c r r i u i o ~ ~ i ~ i o n  Cycle 
execute to generate many examples - I 

I I hl 

iterative 1 C Y d e O  

1. P=Yes 1. X=No 
2. Q=Yes OP 2. Y =Yes 
3. R = N O  3. z = y e s  

decision I 
selection 

Figure 2 - The Combination of DDP and TAR;! 
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net value of the cost and benefit (requirements attainment) 
of those selections. The generated set of such examples is 
passed over to TAR2. From the examples, TAR2 
determines which are the most critical decisions, and how 
to make them so as to maximize the score. TAR2 actually 
determines several alternative such decisions sets, not just 
one. This is an opportune point for the human experts to be 
involved - they can look at the alternative decision sets, 
and select the one they would most prefer. Having made 
such a selection, the information is passed back to DDP, 
and the cycle repeats. In this second and subsequence 
cycles, the decisions made in the prior cycles constraint 
DDP’s choices in its generation of the next set of examples. 
This process is continued until convergence (either all the 
possible decisions have been made, or there is so little 
variation &om the decisions that remain that there is no 
need to continue M e r ) .  

This approach was piloted on data from a large-scale DDP 
application. The application had 99 Mitigations from which 
to select. Five cycles of the DDP-TAR2 iteration described 
above were sufficient to identify the 33 most critical 
decisions (some of these were decisions of which 
Mitigations to perform, the others of which Mitigations to 
not perform). Making just these 33 decisions (leaving the 
other 66 to be made at random) was sufficient to constrain 
the resulting solutions to a very compact region of the 
search space in the optimal corner. This is shown 
graphically in figure 3 .  Each black point on the chart is one 
of the randomly generated examples (selection of 
Mitigations). Its placement is determined by its DDP- 

computed cost (placement on horizontal axis), and benefit, 
i.e., attainment of objectives (placement on vertical axis). 
The dispersal of these black points indicates that when 
Mitigations are chosen at random, there is a large variation 
in the quality of their solutions. The compact white area is 
comprised of a large number of closely spaced white points, 
each corresponding to one of the solutions whose 33 most 
critical decisions were constrained as directed by TAU. 
The remaining variation within this area is due to the 
random choice &om the remaining 66 less critical 
decisions. 

From this figure it is clear that the iterative use of TAR2 
has located near-optimal solutions (those towards the upper 
lee comer). In each of the TAR2-DDP iterations the 
additional decisions made by TAR2 nudge the search focus 
towards the optimal area, allowing it to explore that area 
much more effectively than would have been possible with 
random search alone. 

TAR2 Machine Learning: Application Strengths 

Idenh$es the Most Critical Decisions - the use of TAR2 
identifies which of the many decision are the most critical. 
In DDP terms, each decision is whether or not to apply a 
Mitigation. Those to be applied are the Mitigations that 
contribute the most towards an overall cost-effective 
solution, while those to not be applied are the Mitigations 
that detract the most &om an overall cost-effective solution. 
The remaining Mitigations make little net difference. Note 
that the interconnectedness typical of DDP applications 

low cost, 
high benefit 

300 

250 

200 

150 

100 

50 

0 

high cost, 
high benefit 

200000 3c10GUO 400000 500000 600000 700000 800000 900000 1000000 11133000 1200000 
high cost, 

benefit low benefit 

Figure 3 - TAR2’s Search Results on a DDP Application 
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(recall F ip-e  1) makes identification of these decisions far 
fkom easy. For example, a Mitigation may appear to be 
cost-effective when considered in isolation (because it 
reduces many risks and costs relatively little), yet, in the 
context of the other Mitigations, be redundant (because 
Mitigations that must be applied to reduce other risks 
happen to also reduce the risks that this promising 
Mitigation addresses). 

Multiple Solutions - at each application of TAR2 in the 
iterative DDP-TAR2 cycle, TAR2 proposes several 
alternative sets of decisions. This gives users the 
opportunity to select fiom among them, allowing them to 
inject their preferences into the search process. Coupled 
with the fact that TAR2 identifies the most critical 
decisions first, this means that users’ attention and decision 
making is being applied where it matters the most. This is a 
very effective blend of automated search and expert human 
guidance. 

Robust inter$ace between TAR2 Search and DDP Risk 
Model - the interface between TAR2 and DDP is very 
straightforward, meaning that as DDP evolves, little or no 
change needs to be made to TAR;?. All that TAR2 needs is 
a set of examples, generated and scored by DDP. In return, 
TAR2 provides back to DDP a set of decisions. The 
elaboration of the DDP cost model we discussed earlier 
requires no change to TAR2 - it continues to operate as 
before, relying upon DDP to correctly score each of the 
examples it generates based on the internal-to-DDP model 

of cost and benefit. 

Essentially, TAR2 is uncoupled fiom the innards of the 
DDP costhenefit model. This decoupling has permitted 
TAR2 to be applied in a number of widely differing 
domains, including the COCOMO risk model 171 and 
CMM level 2 [8]. 
The discussion of why TAR2 succeeds in such widely 
differing applications is beyond the scope of this paper - 
the interested reader is referred to [9] and [lo] for further 
details. 

Cptimize for Cost andor Benejit (Least Risk) - the TAW 
form of optimization can be applied to search for benefit 
maximization (maximal attainment of Objectives, or 
equivalently, minimal Risk) within a given cost ceiling, 
cost minimization within a given Risk ceiling, or a 
weighted combination of the two. The key to this is the use 
of the DDP-computed score for each example passed over 
from DDP to TAR2. The calculation of that score embodies 
the optimization goal, allowing TAR2 to search for 
solutions that achieve that goal, but decoupling it from the 
details of the DDP model calculations. 

TAR2 Machine Learning: Application Weaknesses 

Slow Progress - in each iteration TAR2 requires of DDP 
the generation and scoring of the large number of 
examples; this is a slow process. The bottleneck lies in the 
DDP side, where the risk model itself is relatively complex. 

Figure 4 - Simulated Annealing on a DDP Application 
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Requiring that tens of thousands of examples each be 
scored is time consuming. The multiple cycles required by 
the DDP-TAR2 connection exacerbates this problem. 

Manual control of TAR2 required - in the version of TAR2 
used in the pilot study, some manual control of TAR2 was 
required in each cycle. This was relatively easy to learn 
how to do - Tim Menzies taught one of the DDP team, so it 
did not require the intimate involvement of the TAR2 
creator to apply the TAR2 tool. Nevertheless, this would be 
an impediment to the incorporation of TAR;? as the 
optimizer part of DDP. 

5. SIMULATED AN~EALING EXPERIMENTS 
Our final category of heuristic search experiments used 
Simulated Annealing. 

The core idea of Simulated Annealing is a search that 
favors improving the best solutions found so h. However, 
in order to better explore the space, it allows the search to 
take retrograde steps (tu worse solutions). Tolerance for 
such retrograde steps is gradually decreased as the search 
progresses. The net result is rapid convergence towards 
near-optimal solutions. 

Simulated Anneaiing requires the ability to score a 
solution, and the ability to step from the current solution to 
a candidate next solution. Recall that in a DDP application, 
a candidate solution is represented as a vector of Booleans, 
one for each of the Mitigations of that application. The 
Boolean is true if the Mitigation is to be selected for 
application in the solution, false otherwise. Thus to apply 
Simulated Annealing to DDP, the score of a solution is 
derived from the DDP-calculated cost and benefit. The 
goals of the optimization determine how this score is 
calculated. For example, if the goal is to select Mitigations 
that lead to maximal attainment of Objectives while 
remaining within a given cost ceiling, the score for a 
solution would be higher the greater the attainment of 
Objectives, as long as the cost was below the cost ceiling. A 
solution whose cost is above the cost ceiling would be 
scored very low. The ability to step fkom the current 
solution to a candidate next solution is simply the random 
modification of a percentage of the current solution’s vector 
of Booleans representing selectedness of Mitigations. 

Figure 4 shows a run of the Simulated Annealing algorithm 
on the same dataset as was used for the Machine Learning 
pilot study. The cost ceiling has been set at $500,000, 
indicated by the position of the vertical green line. Points to 
the right of the line exceed the cost ceiling. The run is able 
to locate solutions (Mitigation selections) that achieve close 
to the maximal possible benefit (attainment of Objectives) 
while remaining below the cost ceiling. The colors in the 
figure reflect the search progress - red . . . orange . . . yellow 

... green ... blue, indicate decreasing tolerance for 
retrograde steps (the analogy with the physical 
phenomenon of simulated annettkg is of the temperature 
“cooling”). Note that the plot is of all the candidate 
solutions examined by the search, many of which exceed 
the cost ceiling. Their points are plotted, but they generally 
do not become the current working candidate during 
search. As the search progresses, we keep track of the best 
solution found to date. In the diagram, this is indicated by a 
small white circle at the top of the colored area just to the 
leR of the cost ceiling line. 

This and other experiments with Simulated Annealing 
demonstrated the following strengths and weaknesses: 

Simulated Annealing: Applicatiovl Strengths 

Rapid Progress - the algorithm made rapid progress at 
finding much improved solutions. We attribute this to the 
fundamental strength of Simulate Annealing style search. 
Because the search deals with only one solution at a time, it 
is expedient to explore a large number of steps. The 
example in Figure tbd was a 10,000-step search, which took 
approximately 20 minutes running on a 1.8 MHZ laptop. 
The bulk of the time is spent in DDP’s evaluation the cost- 
benefit score for each candidate solution. 

Robust Interj?ace between Simulated Annealing Search and 
DDP Risk Model - the interface between Simulated 
Annealing and DDP is very straightforward. As was the 
case with the Machine Learning experiments, the reason 
for this is that the search is uncoupled from the innards of 
the DDP costbenefit model. 

Optimize for Cost and/or BeaeBt (Least Risk) - the 
Simulated Annealing form of optimization can be applied 
to search for benefit maximization (maximal attainment of 
Objectives, or equivalently, minimal Risk) within a given 
cost ceiling, cost minimization within a given Risk ceiling, 
or a weighted combination of the two. As was the case with 
the Machine Learning experiments, the reason for this is 
that the search is uncoupled from the innards of the DDP 
cost/benefit model. 

Automatic Search - the Simulated Annealing search 
requires no user intervention once it is underway. Prior to 
starting the search the user must indicate the optimization 
goals (e.g., the cost ceiling for a cost-constrained 
Optimization), and select the number of steps of search, but 
there is no need to M e r  tune the search process, or 
intervene as it proceeds. 

Simulated Annealing: Application Weuknesses 

Can’t Distinguish Critical from Non-Critical Decisions - 
the recommended selection of mitigations that is the end 
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product of a Simulated Annealing run on a DDP 
application contains no indication of the relative 
importance of individual decisions. This is the same 
weakness as the Genetic Algorithm application approach. 

Lack of Multiple Solutions - the Simulated Annealing 
search works with a single candidate solution. Thus the end 
result of a search is the best solution found to date, not a set 
of multiple leading solutions. We have partially addressed 
this weakness by adjusting our Simulated Annealing 
algorithm to keep track of the N best solutions to date, the 
value of N set in advance by the user. However, when there 
are trivial variants of the best solution, this solution is 
prone to being swamped by those small variants, and loses 
track of other solutions that do not score quite so well but 
are significantly different alternatives to risk reduction. 

6 .  STATUS AND FUTURE WORK 

The current status of our work is that the Simulated 
Annealing based search has become a part of the standard 
DDP distribution. It has already been used to good effect in 
a recently conducted DDP study of an advanced packaging 
technology. 

We have augmented our Simulated Annealing search 
algorithm to take into account user defined constraints in 
addition to the cost ceiling (or risk ceiling) goals already 
discussed. An example is that two Mitigations may be 
mutually exclusive. In principle it would be possible to 
encode this information directly in the cost scoring hc t ion  
(makmg any solution that applies both of them score as 
infinite cost), but this is not an intuitive way to specify such 
constraints. Instead, the DDP interface proffers a set of 
typical constraint templates, that users can instantiate as 
needed to the study at hand. DDP then automatically folds 
these constraints into the scoring algorithm, so that 
candidate solutions violating one or more such constraints 
score poorly. For small numbers of such constraints, this 
solution appears to work well. 

In the fbture we seek to combine the advantages exhibited 
by each of the heuristic search techniques that we have 
explored We are particularly interested in combining the 
speed of the Simulated Annealing search with the ability of 
the TAR2 Machine Learning to identify which are the most 
critical decisions. We also foresee the need to handle more 
complex sets of user-defined constraints. Our desire is to be 
able to automatically fold these into the search generation 
phase (e.g., for Simulated Annealing, the step to the next 
candidate solution). This would achieve the effect of a more 
rapid search because it would not stray into infeasible 
solution regions. We are also interested in using search to 
reveal the overall solution space, and “interesting” options 
therein. For example, the user might have asked to 
optimize for benefit (maximal Objectives attainment) 

within a given cost ceiling, but if the search process can 
recognize that for only a small increment in cost, vastly 
superior benefits are attainable, it would be desirable to 
recognize this, and report it to the user. 

Our experiments show that heuristic search techniques can 
work well on real DDP application datasets. The positive 
reaction to the use of Simulated Annealing based search 
within a real study suggests that these techniques have a 
valuable role to play. That we are seeing benefit &om our 
relatively preliminary use of Simulated Annealing based 
search is very encouraging. 
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