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ABSTRACT 
An external calibration technique for SIM',233 involves measurement of calibration stars whose positions must already be 
known to an accuracy of 2 milliarcseconds. We demonstrate a procedure that effectively "bootstraps'-' calibration star 
positions from an ab initio catalog to the required accuracy by observing them with the uncalibrated SIM instrument. 
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1. INTRODUCTION 
The bootstrapping procedure involves SIM measurements of a semi-regular 10 by 10 grid of lo* magnitude calibration 
stars in three different baseline positions. Two of the baselines are oriented orthogonal to each other and to the direction 
to the center of the calibration field; the third baseline is canted one degree away from either the first or second baseline 
toward the center of the calibration field. 

We model the calibration stars as static points, without proper motion or parallax. We assume that the calibration star 
positions have apriori knowledge errors of 20 milliarcseconds. We allow errors of 2 arcseconds on the baseline 
orientations, as will be provided by the SIM attitude control system. We assume' a 5 micron knowledge error on the 
absolute baseline length, and a 3 micron knowledge error on the bias offset constant. We assume Gaussian delay 
measurement errors of 250 picometers. 

We generate an input catalog, with true and apriori positions of calibration stars, and apriori baselines. Using the input 
catalog, we generate simulated regularized SIM delay measurements and regularized baselines'. Finally we fit the delay 
measurements to a model equation for the parameters, including star positions and baseline orientations. 

2. INPUT AND TRUE CATALOGS 
For the input catalog we generated a 10 by 10 semi-regular grid of calibration stars (assumed to be lO* magnitude) on a 
15" by 15" square. The stars were then mapped onto the celestial sphere with the field centered on the North Celestial 
Pole, along the z-axis of a three-dimensional Cartesian coordinate system. The stars are observed using three baseline 
orientations: bl = [l 0 01, bz= [O 1 01, b3 = R,(lo)bz 
Note that b3 is obtained by rotating bz by 1 degree about the y axis, thus canting the baseline toward the North Celestial 
Pole. 

To generate the true catalog we perturb the input catalog positions randomly with 20 milliarcsecond rotations. Define 
basis vectors tl and t2 in the tangent plane to the star vector: tl = (k x s)/lk x S I  along azimuthal direction (RA advance) 
where k = [0 0 11 = North Pole and s = apriori star vector; and tz = (s x tJls x tll along radial direction (DEC advance). 
Next, define a rotation perturbation vector wst, in the star's tangent plane: wSt, = tlkcos4, + tzksin4, wltl + *tz. Here 4, 
is a randomly chosen angle between 0 and 27i, and 5 = 20 arcsec - radians. The true star vector is constructed as 
s, = s + w,t, x s. 
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3. SIMULATING SIM MEASUREMENTS 
The apriori and true star positions, together with the baseline vectors, are used to generate SIM delay measurements of 
the calibration stars using a reasonably sophisticated model'of the SIM instrument. Quasi-instantaneous SIM delay 
measurements are m ~ d e l e d " ~ . ~  as dmeasured = <bme, sme> + c + q, where b, is the true science interferometer baseline 
vector, s, is the true star vector, c is the bias offset constant, and q is the Gaussian measurement noise. 

4. FORMULATING THE LINEAR LEAST-SQUARES PROBLEM 
Delays can be estimated from apriori knowledge as destimated = <b, s>, where b = apriori baseline vector, s = apriori star 
vector. We define residuals between measured and estimated delays as D 5 dmeaswed - destimated 
We linearize the delay residuals to obtain a system of normal equations D = A.p 
Here A is the design matrix, A, = dDi/dpj where pj is correction vector for the j'" parameter, so that pest = papriori + p. 

For 100 calibration stars there are 210 parameters to fit, comprising . 2 star rotation angles for each of the 100 calibration stars 
2 baseline vector angles for each of three baseline orientations. 
a bias offset parameter for each of the three baseline orientations 
a baseline length Ibl. 

Observations of 100 calibration stars, each measured in three different baseline orientations generate 300 delay 
measurements. So the system of normal equations is over-determined. 

5. SOLVING FOR THE STAR AND BASELINE PARAMETERS 
We first attempt to solve the linear least-squares problem using Singular Value Decomposition5. 
SVD gives an estimate of the parameter corrections vector p = A'D, where A' is the pseudoinverse6 of A. 
The least-squares estimator minimizes the sum of squares of the differences D - Dest, where De,, = A.p are the delay 
residuals using the estimated parameter corrections vector. 

We found that the SVD solution does not improve the star positions. The reason is that baseline length is degenerate with 
ol star rotation parameters. Recall that the w1 are rotations along the radial direction from zenith. 

An alternative approach is the Gauss-Markov estimator4 which gives p = (ATQ-'A + R-'>ATQ-'D. 
Here, Q is the noise matrix for the measurements, and R is the noise matrix for the parameters. 

The Gauss-Markov estimator uses a Bayesian approach, incorporating apriori knowledge of errors in measurements and 
in parameter estimates; it minimizes the sum of the variances of the fitted parameter residuals. 

Because it makes use of apriori information, the Gauss-Markov estimator achieves good estimates for baseline length 
and bias offset parameters. The resulting star position estimates are accurate to better than 2 milliarcseconds, and 
baseline orientation estimates are accurate to about 25 milliarcseconds. The caveats here are: we may not know the 
appropriate measurement and parameter errors well enough; also the parameter errors could be systematic and not 
random, as we have assumed. 



5. RESULTS WITH THE GAUSS-MARKOV ESTIMATOR 
We determined fit residuals for baseline and star rotation parameters a i l ,  a i 2 .  osil, wSiz, and baseline length Ibl. . . 
9 

RMS of star rotation parameter fit residuals was less than 7.5~10-O~ or -1.5 milliarcseconds 
Errors on the baseline orientations were less than l .2~lO-O~ radians, or -25 milliarcseconds 
Residual of estimated baseline length is -0.05 microns. 
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As a check, we verified that the RMS fit residuals for the parameters were consistent with the parameter accuracies 
predicted by the covariance matrix. 
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Figure 1 shows the residuals in distances between pairs of calibration stars as a function of separation. 

Figure 2 shows the residuals from the covariance matrix, for the radial and azimuthal rotation parameters, for each star. 
Star indices were generated with a 10-by-10 raster scan, which is the reason for the spatially periodic structures seen in 
the plots. 
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Figure 1. Residuals in distances between pairs of stars versus separation. 
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Figure 2. Star parameter accuracies for Gauss-Markov estimator solution, from covariance matrix 

6. CONCLUSION 

We have demonstrated a technique to ‘bootstrap’ knowledge of calibration star positions from ab initio accuracy of 20 
milliarcseconds to better than 2 milliarcseconds, and baseline orientations from ab initio accuracy of 2 arcseconds to 
about 25 milliarcseconds. These improved star positions and baselines provide a sufficient level of apriori knowledge to 
operate the external calibration technique3. Further investigations are needed to determine the effects of systematic 
‘zonal errors’ in the input catalog. 
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