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• Traditional approach: gridded daily/monthly averages and standard deviations. 

• Means and standard deviations characterize the data well only if the data are gaussian. 

• Means and standard deviations do not characterize joint relationships among variables.

• New approach: replace averages and standard deviations with multivariate distribution 
estimates.

• Key idea #1: empirical probability distributions derived from data are the signatures of physical 
processes generating those data. 

• Key idea #2: understand and characterize large scale data structure by seeking physical 
explanations for observed evolution of multivariate probability distributions over space, time and 
resolution.

How can we quantitatively characterize large scale 
(i.e. Level 3) data structure in massive Earth science data sets?
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• Entropy-constrained vector quantization (ECVQ; Chou, Lookabaugh and Gray, 1989) modified 
for use as a data summarization algorithm.

• ECVQ can be seen as a clustering algorithm similar to K-means. Different loss function:

• Result: only as many clusters as necessary to describe the data, up to a maximum of K. (K-
means always uses all K clusters.) Information-theoretic complexity of the data determines how 
many clusters.

• Strategy: apply ECVQ clustering to all grid cells separately. Produces a set of cluster centroids 
and weights for each grid cell.
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xn = multivariate data point
y(xn) = centroid of cluster to which data point is assigned

Ny(xn) = number of data points assigned to cluster with 
centroid y(xn)

How do we produce multivariate distribution estimates?
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• 240 granules per day; each granule is 90 x 45 footprints (Level 2).

• One 35-dimensional data vector per footprint:

• atmospheric temperature at 11 vertical levels (indices 1-11)

• atmospheric humidity at 11 vertical levels (indices 12-22)

• cloud fraction at 10 vertical levels (excludes lowest; indices 23-32)

• land fraction of footprint (index 33)

• day/night flag (index 34)

• quality flag (index 35).

• For each 5 x 5 degree grid cell, input to ECVQ all data vectors with 
footprints inside the cell.

• Output for each 5 x 5 cell: a set of representative vectors and their 
associated weights and distortions. (Distortion is the average squared 
distance between original and representative vectors.) 

• File size: about 37 MB.

AIRS data, January 2003



5AGU, December 5-9, 2005 Amy Braverman and Eric Fetzer

• Does it work?

• Are the summary distributions good reflections of the original data?

• Cluster distortions tell you the answer quantitatively.

• For science: case studies seem to bear out validity for January 2003.

• What can we do with it?: 

• Compute (custom Level 3 data products):

• Distribution implied by a summary is a coarsened representation of the original data 
distribution. 

• Let      be a random vector with probability mass function      , the pmf of the 
original data. Let                    be a the random vector having pmf      given by the 
summary. Then if      is a “nice” continuous function, 

• Simulate from it: summary can be thought of as a statistical mixture of multivariate 
gaussians.

• Mine it!
• Infinite variety of quantities to characterize differences between distributions- choice 

depends on scientific objectives. For agnostic data mining, we need one that has 
intrinsic meaning apart from unknown, future scientific objectives.

Now what?

fY

X fX

Y = q(X)

E‖g(X) − g(Y )‖2 ≈ E
[

(X − Y )′ġ(Y )ġ(Y )′(X − Y )
]

g

E is the statistical expectation operator
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• A distance between distributions:

Data Mining
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‘s are fixed; fill in    ‘s  such that:π p

(1) constraints are satisfied
(2)      is minimized∆

π11 = p11 + p21 + p31

π12 = p12 + p22 + p32

π13 = p13 + p23 + p33

π14 = p14 + p24 + p34

column constraints

π21 = p11 + p12 + p13 + p14

π22 = p21 + p22 + p23 + p24

π23 = p31 + p32 + p33 + p34

row constraints
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• Use       to characterize relationships among the 33 grid cells in the area shown below.
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Example
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• Problem addressed: finding and quantitatively characterizing previously unknown structure in 
large, satellite data sets.

• Approach: summarize data in a way that preserves statistical properties, but also reduces size 
and complexity. Use probabilistic metric to quantify degree of difference between summaries.

• Use the metric as a basis for standard and non-standard data mining methods.

• Other uses: 

• Compare data from different sources (e.g. observations to model output).

• Study time series of summaries.

• Study effects of changes in resolution.

• Contact information:

• email:                        Amy.Braverman@jpl.nasa.gov

• AIRS website:          http://www-airs.jpl.nasa.gov

Summary


