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SUMMARY/ABSTRACT 
We present a dynamic fault tree model of the benchmark propulsion system, and solve it using Galileo. 

Dynamic fault trees (DFT) extend traditional static fault trees with special gates to model spares and other sequence 
dependencies. Galileo solves DFT models using a judicious combination of automatically generated Markov and 
Binary Decision Diagram models.  Galileo easily handles the complexities exhibited by the benchmark problem. In 
particular, Galileo is designed to model phased mission systems. 

A phased mission system (PMS) is defined as a system whose mission is composed of multiple, consecutive 
and non-overlapping phases. Generally, the system configuration, failure criteria and component behavior of 
different phases may be different. Because the system can change configuration and behavior from phase to phase, 
dependencies arise between the variables representing components in different phases. The Galileo approach to 
phased-mission system handles phased mission dependencies as well as dependencies arising from common cause 
failures, complex redundancy management, shared and cold spares, and other functional dependencies. 

Galileo is a software tool for dynamic fault tree developed by the University of Virginia under contract to 
NASA. Galileo is available commercially from Exelix (exelix.com). 
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INTRODUCTION 
A phased mission system (PMS) is defined as a system whose mission is composed of multiple, consecutive and 

non-overlapping phases. The reliability of a PMS is defined as the probability that the mission successfully achieves 
its objectives in all phases. Generally, the system configuration, failure criteria and component behavior of different 
phases may be different [1]. According to its different characteristics, a PMS can be classified to be static or 
dynamic, simple or complex with respect to each single phase, identical or different considering structures in 
different phases, short or long with fewer or more phases. 

A static PMS where all phases are static is usually solved using the phase algebra [2, 3] based techniques. While 
a dynamic PMS where at least one phase is dynamic is solved applying Markov chain (MC) based techniques [4, 5]. 
There is no problem to handle a simple/small PMS that has two to three phases with each involving just a few 
components, through these techniques. However, with the increase of the complexity of a single phase structure or 
the phase number, or both, both PMS-BDD and MC based techniques could face the state space explosion problem. 
Particularly, when resolving a dynamic PMS, we currently model it by converting all phases into a single MC 
whose state space is equal to the union of the state spaces of MC associated with each phase [6]. Ou and Dugan 
have recently developed techniques for modular solution of phased mission systems [13], but this technique has not 
been fully implemented as yet in Galileo.  Without modularization, the single MC constructed for a big PMS could 
become too huge to handle.  

In this paper, we present a dynamic fault tree model of the benchmark propulsion system, which involves 5 
phases and each phase consists of 20 modules. One important feature of this system is that the structures or dynamic 
fault trees (DFT) of all its phases are identical. The only difference between phases comes from the parameters of 
each component and mission time of a single phase.  

BENCHMARK EXAMPLE DESCRIPTION 
The original example is an ion propulsion system, which is needed for a science mission to the outer solar 

system. Totally 17 phases are involved. Table 2-1 lists the mission phases, along with the propulsion system 
operating time during each phase. For those phases where the propulsion system only operates during part of the 
phase (e.g., Phases 4, 10, and 14), thrust is continually provided from the beginning of the phase until the specified 
operating time expires.  

Table 2-1. Propulsion System Mission Profile 
 

Mission Phase Duration (hours) Propulsion System 
Operating Time (hours) 

1 5520.0  5520.0  
2 336.0  0  
3 9043.2  9043.2  
4 26280.0  13140.0  
5 13140.0  13140.0  
6 5040.0  5040.0  
7 1483.2  1483.2  
8 720.0  720.0  
9 1444.8  1444.8  

10 4315.2  2880.0  
11 1588.8  1588.8  
12 720.0  0  
13 1540.8  1540.8  
14 4327.2  2880.0  
15 1101.6  1101.6  
16 720.0  0  
17 720.0  720.0  

 
The propulsion system consists of ten thruster assemblies and a propellant supply. Each assembly has one 

propulsion power unit (PPU) and two ion engines. When an assembly is operating, the PPU provides power to just 
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one ion engine. The other engine will be in a standby mode, unless failed. Figure 2-1 is a schematic of a thruster 
assembly. Ion Engine A will continue to be the operating engine of the assembly until the engine fails.  

Figure 2-1. Thruster Assembly Schematic 
 

During Phase 1 the success criterion is propulsion from four assemblies. During subsequent phases, where the 
propulsion system is operating, the success criterion is propulsion from eight assemblies. In assessing the mission 
risk input power failures are modeled separately, so the propulsion system model can ignore a loss of power from 
that support system. The strategy for thruster assembly operation is to begin with power from the PPU going to Ion 
Engine A. Ion Engine A will continue to be the operating engine of the assembly until the engine fails. At that time 
the strategy is to (1) shutdown the PPU, (2) switch the PPU to Ion Engine B, (3) reenergize the PPU and operate 
with Ion Engine B. There are no intermediate switches between a PPU and the ion engines.  All switches are 
integral to the PPU. 

DERIVED MODEL 
In order to state our method clearly (and to facilitate manual verification of results), we derive a modified 

example from the original one. The derived example has 5 phases, which are the same as the original phases 5 
through 9, marked to be bold in Table 2-1 above. Furthermore, we extend the number of the thruster assemblies 
from 10 to 20 so that it is more convincing to demonstrate the feasibility of our method with respect to complex 
systems.  

Considering that each assembly contains 2 engines, with one operational and one standby, it is reasonable to 
model such a structure via a dynamic cold spare gate (CSP) [7, 8], which is shown in Figure 3-1(a). We use a 
dynamic functional dependent gate (FDEP) to model the behavior of PPU unit, the failure of which will directly 
lead to the failures of both engines. Figure 3-1(b) depicts the model of the dependency between a pair of engines 
and their corresponding PPU unit. 

From Figure 3-1(c), we know that phase 1 is composed of 20 inputs, each of which is represented by a transfer 
gate. One transfer gate here is actually equal to an assembly module. The top gate in Figure 3-1(c), a static K-out-
of-M gate with K = 13 and M = 20 tells us that the failures of any 13 or more assemblies will bring down the 
system. This is equivalent to the success criteria which requires that at least 8 assemblies be operational.  Based on 
Figure 3-1(d), we can see that a failure of any single phase will result in the top event, the failure of whole system. 
A transfer gate in Figure 3-1(c) representing a single assembly is therefore composed of a PPU and two engines, 
which is already shown in Figure 3-1(a) and (b). Since it is supposed in this report that all phases have identical 
structures, the model in Figure 3-1(c) for phase 1 can be also applied to any other phases other than phase 1. Thus, 
an integrated model is further constructed in Figure 3-2. 
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(a) Model of an engine pair                  (b) Model of dependency 

                           
(c) Model of a single phase                     (d) Model of the whole propulsion PMS 

 
Figure 3-1. Model of the derived example 

 

 
(a) Model of the main page 

 

 
(b) Model of the sub-page w.r.t. each assembly module 

 
Figure 3-2. An integrated model of the propulsion example 

BENCHMARK EXAMPLE ANALYZING 
During the analysis process, we faced two primary difficulties. One difficulty comes from dealing with dynamic 

multiple phases, the other difficulty comes from dealing with a static K-out-of-M gate. In this section we will 
discuss these issues and our corresponding strategies. 

Dealing with Dynamic Multi-phases 

Normal Way 
When analyzing a dynamic PMS, the normal way is to consider the system as a whole and accordingly to 

construct a single MC which covers the state space of all phases of the system. Let us first look at a simple dynamic 
PMS called PMS1, shown in Figure 4-1. PMS1 includes 2 phases, each having 2 modules, First pair top and Second 
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pair top. Either module’s failure will lead to the top event’s failure. Using the normal way, which means that no 
modularization will be performed all basic events appearing in any phase are collected to construct the single MC of 
the whole system. Each time when creating a new destination state from a source state, a thorough phase-by-phase 
check is needed in order to ensure that the new state be not a duplication of an existing state, and also to ensure that 
the new state be valid for at least one phase. After all MC states are created, the corresponding transitions are also 
created for all phases. Figure 4-2 provides the MC of PMS1. 

For such a simple system, there are 5 states and 32 transitions involved in total. It seems that the MC in Figure 
4-2 is easy to handle. However, with the increase of complexity of each single phase or the number of phases, the 
corresponding MC will become very huge so that be hard to resolve. For instance, based on the model in Figure 4-1, 
suppose that only one more phase and one more similar module are added. Then the updated MC will be inserted 19 
more states and 112 more transitions. We will give a concrete comparison between this normal way and our 
alternative in later section.  

         
Figure 4-1. Model of dynamic system PMS1            Figure 4-2. MC of dynamic system PMS1 

Alternative Way 
By contrast to the normal way to treat a PMS, we note that all phases have the same DFT structures then share 

the same MC state space as phase 1, which allows possible to only analyze the DFT and MC of phase 1. Since 
modularization within a non-phased system (or a single phase system), is much easier to carry out and also has been 
implemented in some reliability analysis tools, the problem to handle multiple dynamic phases is then converted to 
an easy-handle issue related to a single phase. The main three steps are listed here. (1) To identify two modules M1 
and M2 within phase 1, shown in Figure 4-1. (2) To construct the MC for each module within phase 1. In addition to 
the transitions that are related to phase 1, all transitions related to any other phases are created in this MC. Figure 4-
3 illustrates the MC of module M1 in phase 1. (3) To resolve each MC by summing up the probabilities of all failed 
states within one certain phase to get the failure probability of that phase, then summing up the failure probabilities 
of all phases to get the system unreliability. For more details about calculating a phased-mission MC, refer to [9]. 
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Figure 4-3. MC of module M1 in phase 1 

Figure 4-3 indicates that module M1 includes 3 states and 8 transitions. Module M2 also has such a similar MC 
structure. Comparing to the normal way, the number of transitions with the alternative way decreases by 50% (from 
32 to 16), while the number of states actually increases a little bit (from 5 to 6). But the efficiency of this alternative 
way can be particularly demonstrated in analyzing more complex PMS with structure-identical phases. Consider the 
same updated example mentioned in section 4.1.1, which contains 3 phases and 3 modules. With the alternative 
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way, the states and the transitions only increase linearly, from 6 to 9 and from 16 to 36, respectively. In Table 4-1, 
we make a comparison of these two ways in terms of unreliability and time cost (1).  

 
Table 4-1. A comparison between the normal way and the alternative way (2)

 
PMS Structure Normal Way Alternative Way 

Modules Phases Unreliability Time cost (sec.) Unreliability Time cost (sec.) 
2 2 0.003063605247 2.141      0.003063605247 1.250 
3 2 0.004697148430 7.954      0.004697148430 2.078 
4 2 0.006444326206 40.100      0.006444326206 3.141 
5 2 0.003866119080 6267.082      0.003866119080 5.953 

 
It is observed from Table 4-1 that with the normal way, the time cost increases dramatically from a few seconds 

to more than one hour when the number of modules is changed from 2 to 5. By contrast, with our alternative way, 
the time cost only increases a little bit without losing the correctness of the results.  

Figure 4-4 reflects an intrinsic difference between these two ways. From this Figure, we can see that with the 
normal way, the time cost increases suddenly after the number of modules reaches 3. There is no doubt that it would 
be very difficult even impossible to resolve a more-phase or more-module system through the normal way. 
However, with the alternative way, the curve increases much slower. Besides the data in Table 4-1, a third curve is 
also illustrated in Figure 4-4, which reflects the relationship between the time cost and the number of modules of a 
5-phase PMS. When the number of modules is up to 20, the time cost is still less than 100 seconds or 2 minutes. 

Time cost vs. number of modules under a top OR gate
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Figure 4-4. Time cost versus the number of modules in two ways 

Dealing with Static K/M Gate  
After we overcame the difficulty caused by multiple identical dynamic phases, another new difficulty is put in 

front of us – when we go back to handle the derived example shown in Figure 3-2, a problem of short-of-memory 
appeared. This problem has nothing to do with dynamic issue but with static K-out-of-M or K/M gates.   

A K/M gate has a strong modeling ability, which is often used in a system with redundancy. When dealing with 
a K/M gate, a regular method is to expand it into a set of AND and OR gates. For example, in Figure 4-5, an 
original static system with a 2/3 gate is expanded into a new system with one OR gate and three AND gates, each 
connecting two inputs. The expansion process implies that a K/M model expands the size of static fault tree (SFT) 
structures then the binary decision diagram (BDD) space in later analysis, which makes harder to handle a big PMS. 
Generally, a K/M gate will be expanded into  combinations of inputs. Therefore the 13/20 gate in Figure 3-2 
will be expanded into 77520 AND gates and 1 OR gate. This would be obviously a disaster! 

K
MC
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Figure 4-5. Expansion process of a system with 2/3 gate 

 
In this paper, we adopt a recursive algorithm to avoid such an expansion [10 - 12]. The main idea is to make use 

of the Shannon decomposition theory as shown in Eq. (4-1). Suppose there is a static system with a K/M gate, in 
which there are M inputs and K or more input failures will result in the system failure. In this recursive algorithm, 
once a certain single input fails, we need to consider whether K-1 or more inputs fail in the remaining M-1 inputs; if 
this certain single input is operational, we need to consider whether K or more inputs fail in the remaining M-1 

inputs. Let  represent the Boolean function of the top K/M gate of a system,  and K
Mf ix ix  representing the 

facts that the i-th input is failed and operational, respectively. Thus the Shannon decomposition expression above 
can be rewritten as Eq. (4-2) for this K/M system. 
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With such an iterative expression, we successfully avoid the risk to expand a K/M system thus also reduce the 
memory usage efficiently. Figure 4-6 and 4-7 reflect some satisfying results (3). Figure 4-6 considers a 5-phase 
system with M = 20 modules (referred to the example in Figure 3-2) with a K/M top gate and K varying from 1 to 
13. Figure 4-6 shows that when the number M is fixed, the increase of number K has little effect on the time cost. In 
this Figure, the time cost is nearly invariable, which is between 1 minute and 2 minutes. In Figure 4-7, we set each 
single phase to be a fixed 13/20 structure, and increase the number of phase(s) from 1 to 5. The almost straight line 
in Figure 4-7 indicates that the ratio of the time cost to the number of phases is close to a constant, which means that 
under the recursive algorithm and the alternative way, the time cost increases approximately linearly with the 
increase of the number of phases. 

 
Time cost vs. number of K under a top K/M gate, M = 20
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Figure 4-6. Time cost versus the number of K        Figure 4-7. Time cost versus the number of phases  

for a K/M system                                     for a 13/20 system 

Final Result 
After resolving the two aspects of the primary difficulties, it is now the time to solve the derived example in 

Figure 3-2. Here we modified the original parameters of “ei” a little bit, and select the mission times of phases 5 
through 9 from Table 2-1. All data are listed in Table 4-2. The final system unreliability is 2.48e-013, which costs 
89 seconds (about one minute and a half). 

We note that this unreliability is very small, and the parameter values we used were adapted from those 
provided by NASA.  In particular, the fail to switch was changed from “per demand” to “per hour.” An accurate 
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dependability analysis must consider the availability of the system on demand, and the reliability of the system 
during demand.  Meshkat & Dugan [14] have developed an approach for the automatic combination of these 
analyses within the context of dynamic fault trees.  (We note that funding cuts prevented the implementation of the 
methodology needed to consider ‘per demand’ occurrences.) 

 
Table 4-2. Reliability Data 

 
Component Type Failure Mode Failure Rate Value 

PPU Fails to operate (per hour)   1.0×10-6 in all phases 
1.0×10-5 in phase 1 
1.2×10-5 in phase 2 
1.3×10-5 in phase 3 
1.4×10-5 in phase 4 

Ion Engine / ei Fails to operate 
(per hour) 

1.5×10-5 in phase 5 
Phase 1 13140.0 
Phase 2 5040.0 
Phase 3 1483.2 
Phase 4 720.0 

Mission time 
(hour) 

Phase 5 1444.8 
 

(1)   All results are obtained from our reliability analysis tool, Galileo. 
(2)   The data in Table 2-1 and Figure 4-3 are based on the following parameters:  

Table 4-3. Parameters used for Figure 4-3 

Mission Time phase 1 phase 2 phase 3 phase 4 phase 5 
Failure Rate 10 20 30 40 50 

e1 1.0E-04 1.2E-04 1.3E-04 1.4E-04 1.5E-04 
e2 2.0E-04 2.2E-04 2.3E-04 2.4E-04 2.5E-04 
e3 3.0E-04 3.2E-04 3.3E-04 3.4E-04 3.5E-04 
e4 4.0E-04 4.2E-04 4.3E-04 4.4E-04 4.5E-04 
e5 5.0E-04 5.2E-04 5.3E-04 5.4E-04 5.5E-04 
e6 6.0E-04 6.2E-04 6.3E-04 6.4E-04 6.5E-04 
e7 7.0E-04 7.2E-04 7.3E-04 7.4E-04 7.5E-04 
e8 8.0E-04 8.2E-04 8.3E-04 8.4E-04 8.5E-04 
e9 9.0E-04 9.2E-04 9.3E-04 9.4E-04 9.5E-04 

e10 10.0E-04 10.2E-04 10.3E-04 10.4E-04 10.5E-04 
 
(3)   The data in Figure 4-5 and Figure 4-6 are based on the following parameters:  

Table 4-4. Parameters used for Figure 4-5 and Figure 4-6 

 phase 1 phase 2 phase 3 phase 4 phase 5 
mission time 10 20 30 40 50 

ei 1.0E-04 1.2E-04 1.3E-04 1.4E-04 1.5E-04 
PPU 0.5E-4 0.5E-4 0.5E-4 0.5E-4 0.5E-4 

Number of K Unreliability Time cost （second） 
1 1.428187201E-01 92.670 
3 4.674808054E-04 92.205 
5 3.752153089E-07 91.641 
7 1.114836387E-10 92.421 
9 1.439310982E-14 92.202 
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11 8.588159316E-19 89.592 
13 2.366967122E-23 91.561 

Phase NO. Unreliability Time cost （second） 
1 9.524395682E-39 32.999 
2 1.555120822E-32 45.781 
3 1.332259270E-28 59.516 
4 1.095798012E-25 75.640 
5 2.366967122E-23 91.561 
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