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Abstract - Future robotic space missions will employ a 
precision soft-landing capability that will enable exploration 
of previously inaccessible sites that have strong scientific 
significance. To enable this capability, a fully autonomous 
onboard system that identifies and avoids hazardous features 
such as steep slopes and large rocks is required. Such a 
system will also provide greater functionality in unstructured 
terrain to unmanned aerial vehicles. This paper describes an 
algorithm for landing hazard avoidance based on images 
from a single moving camera. The core of the algorithm is an 
efficient application of structure from motion to generate a 
dense elevation map of the landing area. Hazards are then 
detected in this map and a safe landing site is selected. The 
algorithm has been implemented on an autonomous 
helicopter testbed and demonstrated four times resulting in 
the first autonomous landing of an unmanned helicopter in 
unknown and hazardous terrain. 

Index Terms - autonomous landing, hazard 
detection, structure from motion, UAV. 

I. INTRODUCTION 

This work has been conducted in the context of 
providing autonomous image-based navigation algorithms 
to space science missions. Autonomous spacecraft systems 
have the potential to reduce costs while enhancing existing 
systems and enabling new capabilities for future deep space 
missions. In particular, landing on planets, moons, comets, 
and asteroids will benefit tremendously from on-board 
systems that autonomously and accurately determine 
spacecraft velocity and position relative to a landing site. In 
addition, autonomous detection of hazards during descent 
will enhance safety and enable missions to landing sites that 
are scientifically interesting but hazardous. 

To date, no space science mission has employed hazard 
detection and avoidance during landing and this has had an 
impact on landing site selection. For example, the Mars 
Exploration Rovers mission selected Gusev Crater and 
Meridiani Planum for two reasons: they are flat plains that 
are relatively free of landing hazards and they are potentially 
scientifically interesting. Given a hazard avoidance 
capability, future missions will be able to pick landing sites 
with a greater emphasis on science return and less on 
engineering safety criteria. 

Proposed sensors for hazard detection and avoidance are 
typically based on active range imaging. These active 
sensors are expensive, massive, power hungry, large and 
complicated. In contrast, cameras are cheap, small, low 
power and relatively simple. If an efficient and robust 
algorithm were developed for processing imagery to produce 
a terrain map then hazard detection using a single moving 

camera would be possible and the cost and accommodation 
savings to missions would be large. 

This paper describes a novel algorithm for hazard 
detection and avoidance from imagery taken by a single 
moving camera. The specific novel components of the 
algorithm are as follows. Unlike in binocular stereo vision, 
this algorithm uses images from a single camera. 
Consequently, it must compute the motion between images 
and use this estimate when triangulating to establish the 
structure of the scene. Since the motion between images is 
generally unconstrained the algorithm uses 2D feature 
tracking (instead of searching along the scan line) to 
establish correspondences; this approach is more general 
than binocular stereo-vision. When compared to other 
structure from motion algorithms this algorithm is novel in 
that it generates a dense terrain map and does this in a 
computationally efficient and robust fashion. The final novel 
component of the algorithm is its use of an altimetry 
measurement to establish the overall scale of the scene. 

Autonomous testbeds (e.g., rovers, aerobots, and 
helicopters) are commonly used by NASA to demonstrate 
technology on earth under mission relevant conditions. At 
the Jet Propulsion Laboratory an autonomous small-scale 
helicopter is used to demonstrate algorithms for planetary 
landing and small body exploration. Image-based hazard 
detection and avoidance has been implemented on the JPL 
Autonomous Helicopter Testbed which has resulted in the 
first autonomous landing of an unmanned helicopter in 
unknown and hazardous terrain. 

A.  Related Work 

Vision-based control of autonomous aerial vehicles has 
been an area of active research for a number of years. In [8], 
image-based motion estimates are combined in an Extended 
Kalman filter along with IMU, GPS and sonar altimeter 
measurements to provide a navigation solution for an 
autonomous helicopter. Amidi et al. [l] present a visual 
odometer to estimate the position and velocity of a 
helicopter by visually locking on to and tracking ground 
features. Attitude information is provided by a set of 
gyroscopes while position and velocity is estimated based 
upon template matching from sequences of stereo vision 
data. [4][13][12] extend vision-based control to the 
autonomous landing problem. In [4], no autonomous 
landing is attempted, however a vision-based approach for 
safe-landing site detection in unknown, unstructured terrain 
is described. Both [13] and [12] describe a vision-based 
approach for locating a known target and then tracking it 
while navigating to and landing on the target. However, in 

* The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract from the 
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these two approaches, the target area is known apriori to 
be flat and safe. 

Recently there have been flight missions that use terrain 
imaging for spacecraft control. The Mars Exploration Rover 
Descent Image Motion Estimation System (MER-DIMES) 
used images to estimate velocity, but had no capability to 
generate terrain maps. MDRobotics/Optech have developed 
a scanning lidar system for the XSS-11 Mission that can 
generate terrain maps, but like all scanning lidar systems it 
consumes many more resources (-lOKg, 75W) than a 
camera-based system ((lkg, <5W for MER DIMES). The 
Near Earth Asteroid Rendezvous Mission used imagery to 
touchdown on the surface of Eros, but all operations were 
manual. MUSES-C will attempt to return a sample from an 
asteroid. The terminal control for this mission is performed 
by placing a known marker on the surface of the asteroid; no 
landing hazard detection is employed. The purpose of the 
Deep Impact mission is to impact a comet at high velocity 
with a penetrator spacecraft while another spacecraft images 
the impact site as it passes by. The targeting requires closed 
loop image-based control using autonomous centroiding, 
but no terrain reconstruction or hazard avoidance is needed. 

11. TERRAIN MAP GENERATION 

The inputs into the hazard detection and avoidance 
(HDA) algorithm are two overlapping images of the surface 
and a measurement of the distance between the camera and 
the surface along the camera optical axis (i.e., a slant range 
from a narrow beam altimeter). for the first image. The 
outputs from the algorithm are: the change in position and 
attitude between images, a dense terrain map of the imaged 
surface and a safe landing site on the surface. The algorithm 
has multiple stages. First a sparse set point features are 
selected and tracked between the images. These features are 
then used as inputs to a motion estimation routine that 
solves for the change in pose (attitude and position) of the 
camera between image acquisitions and the depth to each of 
the sparse features. Next, a dense grid of features are 
selected and tracked between the images using the motion 
and depth estimates to bound the search for feature tracks. 
Triangulation using these dense feature tracks results in a 
cloud of 3D points which are projected into a 2D grid to 
create a terrain map. Local operators are applied to the 
terrain map to estimate slope and roughness. A safe site for 
landing is then selected that is farthest from all slope and 
roughness hazards. The details of each stage of the 
algorithm, with an emphasis on computational efficiency, 
are described below. Run times and important parameters 
for each stage are described in TABLE I. 

Fig. 1 Feature selection and tracking. 

A. Initial feature selection and tracking 

The first stage in the algorithm finds locations in the 
first image that will be good for tracking and then searches 
for their corresponding location in the second image using 
image correlation. 

Feature selection is done using the efficient 
implementation of the Shi, Tomasi and Kanade feature 
detector described in [2]. First image gradients 
Zr(r,c),Zc ( r ,c )  are computed using finite differences over 
the entire first image. Next the autocorrelation matrix A(r,c) 
for a small window T around each pixel (hereafter called the 
template) is computed. 

For efficiency, the elements of A are computed using a 
sliding sum; each time the template is shifted by a pixel, 
the gradients that leave the template are subtracted from the 
sum and the gradients that appear in the window are added. 
Pixels are better for tracking when A has two large 
eigenvalues. As described in [2] the check for large 
eigenvalues can be replaced by the check against a 
minimum allowable eigenvalue L. 

(2) P = ( a  -At)(c -A,)- b’ > 0 
a z A, 

Motion estimation is more likely to be well 
conditioned if the selected features are evenly spread over the 
image. To enforce an even distribution, the image is broken 
into blocks of pixels and the feature that meets the 
conditions in (2) and maximizes P over the block is selected 
as the best pixel in the block. As shown in Fig. 1, this 
approach, spreads the feature evenly across the image. 

Once features are selected they are tracked into the 
second image using a 2D correlation-based feature tracker. 
No knowledge of the motion between frames is assumed, so 
the correlation window is typically square and large enough 
to handle all expected feature displacements. To increase 
efficiency a sliding sums implementation of pseudo- 
normalized correlation C(r,c) is used [ 6 ] .  

where ?corresponds to the I with the mean subtracted 
Correlation is applied in a coarse to fine fashion as 

follows. First, block averaging is used to construct an 
image pyramid for both images. The number of image 
pyramid levels nl depends on the size w of the window W 
(hereafter called the window) over which the feature is 
correlated. 

(4) nl = log,(w) - 2 

The template half-width tr and window half-width w~ at each 
level are scaled depending on the level in the pyramid 
according to the following rules. 

(5 )  t, = max(2~12’ + 0.5) 1s n, 

max(2 w/2‘ + 0.5) 1 = n, 

w,={ ’ 1 c fl, 

Feature tracking starts at the coarsest level of the 
pyramid with a template and a window size scaled to match 
the coarse resolution. The pixel of highest correlation is 
used to seed the correlation at the next finer level. As given 
in (9, after the coarse level, the template size increases as 
the pyramid level increases while window size is fixed. At 
the finest scale, the original image data is correlated, albeit 
with a small window size, and the feature track is accepted if 
the correlation value is higher than a threshold. Sub-pixel 



' tracking is obtained by fitting a biquadratic to the 
correlation peak and selecting the track location as the peak 
of the biquadratic. 

The coarse to fine nature of this feature tracker makes it 
efficient even for large translations between images. 
However, since a 2D correlation is used to track features, it 
is susceptible to rotations between images and large changes 
in scale. In practice we have found it is possible to track 
features when the change in attitude between frames is less 
than 10" in roll about the optical axis, less than 20" in pitch 
and yaw and the change in altitude between images is less 
than-a 20%. 
I top view off set view side view 

B. Structure from motion 

The next stage in the algorithm, is a structure from 
motion estimation that uses feature tracks to solve for the 
change in position and attitude (e.g., the motion) of the 
camera between the images and the depth to the selected 
features in the first image (e.g., the structure). Structure 
from motion has been studied for decades, and there are 
numerous structure from motion algorithms in existence (see 
[S][9] for the state of the art). 

This stage uses a previously reported [lo] robust non- 
linear least squares optimization that minimize the distance 
between feature pixels by projecting the features from the 
first image into the second image based on the current 
estimate of the scene structure and camera motion. In this 
approach the motion between two camera views is described 
by a rigid transformation (R, t) where the rotation R, 
represented as a unit quaternion q ,  encodes the rotation 
between views and t encodes the translation between views. 
The altimetry measurement is used to set the initial depths 
to the features in the scene. This altimetry augmentation to 
our structure from motion algorithm eliminates the scene 
scale ambiguity present in structure from motion algorithms 
based solely on camera images. The output of this stage of 
the algorithm is the 4 DOF motion between images and the 
depth to the features selected in the first image. Fig. 2 
shows three views of the computed motion and structure for 
the images shown in Fig. 1. The two positions of the 
camera are shown as red and green coordinate axes. The 
fields of view of the images are shown as red and green 
rectangles and the 3D position of the feature tracks are 
shown as white dots. 

C. Dense structure recovery 

The final stage of the algorithm uses the motion 
between images and the coarse structure provided by the 
depths to the feature tracks to efficiently generate a dense 
terrain map. Unlike in stereo vision where the images are 

separated by a know baseline aligned with the image rows, 
when using a single camera to recover scene structure, the 
motion between images is arbitrary. Consequently, standard 
scan-line rectification algorithms cannot be applied to make 
surface reconstruction efficient; other approaches need to be 

Fig. 3 Dense feature tracking on epipolar segments. 
For a pinhole camera, the projection of a pixel in the 

first image must lie on a line in the second image that is 
determined by the motion between images (the epipolar 
line). The depth to the pixel determines the location of the 
pixel along the line. If the depth to the pixel is unknown, 
but bounded, then the pixel will lie along a segment of the 
line (an epipolar segment). By applying image correlation 
along this segment, the depth to the pixel can be determined 
exactly with minimal search. Using these observations an 
efficient algorithm for terrain map generation that can 
operate with images under arbitrary motion has been 
developed. 

First the maximum and minimum scene depths are 
established. Because the features are spread over the entire 
image, the depth to features estimated in the structure from 
motion stage of the algorithm are used to indicate how 
much depth variability there is in the entire scene. However, 
there may be some parts of the scene closer or farther than 
the feature depths. To deal with this uncertainty, the range 
of allowable scene depths is increased by a small ffaction 
from that estimated during structure from motion. 

To generate a dense set of scene depths, a grid of pixels 
are selected in the first image. The spacing of the grid is an 
important parameter; a coarse grid may miss landing hazards 
while a fine grid will have an increased processing time. At 
the moment grid spacing is a user defined parameter, but it 
could be set automatically based on the size of the helicopter 
(or lander) and the pixel resolution. 

Next, the epipolar segment is determined for each pixel 
in the grid. Let the minimum and maximum scene depths 
be amln and amax, and let the unit focal length homogenous 
coordinates of the pixel p in the first image be h = [h,,h,] . 
The 3D coordinate of pixel h at minimum scene depth is 

(6) Xrn" = [h,cc,,,.h,a*,,,u,,IT. 

Its 3D coordinate in the second image is 

(7) xg, = rX~.o,X;,l>Xa",lT = R(q)X,, + t 



and the projection of h into the second image is 

(8) It;" = t ~ a , " O ~ x ~ " ~ , x ~ , , , ~ x a , " * l * ~  

An analogous procedure is used to compute h,, and the 
camera model is then used to convert hbi, and hA,into 
pixel locations p;,,and pLax that define the epipolar segment 
in the second image. The CAHVOR camera model is used 
[16]. If pkinor p- are outside the image then the pixel is 
removed from consideration. This process is repeated for 
each pixel in the grid. In Fig. 3 the green segments in the 
bottom image correspond to the epipolar segments for pixels 
(red squares) shown in the top image. 

Next the matching location of pixel p along the epipolar 
segment is determined. First a window around p in the first 
image is compared to a window around pLin in the second 
image using sum-of-absolute differences (SAD). 

(9) S(r,c)= &(r,c)-12(r,c) 
T 

The window in the second image is then incremented by one 
pixel along the epipolar segment and the SAD is 
recomputed. This process repeats until pkax is reached. 
Let p' be the location in the second image of the maximum 
SAD value along the segment. In a final clean up 
procedure, correlation values (3) at the eight pixel locations 
bordering p' are computed and a biquadratic is fit to them. 
As with the correlation tracker, a sub-pixel correlation peak 
is obtained from the bi-quadratic and p' is assigned to its 
location. If the correlation value is less than a threshold, the 
pixel is eliminated from consideration. 

Notice that in contrast to the search for feature tracks 
over a large window done in the initial stage of the 
algorithm, the search for dense depth is done along a small 
one dimensional segment. This increased the efficiency of 
feature tracking for dense depth recovery and makes it 
possible to use the efficient SAD tracker. Correlation is 
more accurate than SAD, but it is less efficient to compute. 
However, because the search space is constrained, 
experiments have shown that he SAD tracker rarely tracks 
incorrectly. Fig. 3 shows the result of SAD tracking the red 
boxes shown in the top image along the green epipolar 
segments with matching locations shown as blue boxes. 

Once the grid of feature tracks is established, 
triangulation, using the method described in [15], is applied 
to establish the depth to each feature. Next, the homogenous 
coordinates of each feature are scaled by the correspond 
depths to produce a cloud of 3D points in the coordinate 
frame of the first image. 

D. Terrain map generation 

For hazard detection, the terrain data should be 
represented in a surface fixed frame, (i.e., a frame aligned 
with gravity that is fixed to surface independent of the 
camera motion) so that (1) local slope relative to gravity can 
be computed and (2) the helicopter can use surface fixed 
pose information to navigate to the safe landing site. 
Furthermore, for efficiency, the terrain data should be evenly 
sampled so that local operators of fixed size can be applied 
to detect hazards. The point cloud generated from the dense 
feature tracks does not meet these criteria. The points are in 
the coordinate frame of the moving camera, and the points 
are unevenly sampled in Cartesian space due to the even 

sampling in image space of a perspective camera that is 
likely pointed off nadir. To satisfy the hazard detection 
criteria, a the point cloud is projected into a digital elevation 
map (DEM). 

top view side view 

Fig. 4 Digital elevation map. 
To generate the DEM, a transformation from the camera 

frame to a surface fixed frame is needed. This 
transformation can come from an onboard filter that 
estimates position and attitude in the surface fixed frame or 
it can be constructed on the fly using the height of the 
camera above the ground and the surface relative roll and 
pitch angles of the camera (yaw or azimuth is not needed). 
Roll and pitch can be measured using an inclinometer, or, if 
the terrain is assumed to be relatively flat, they can be 
estimated by fitting a plane (robustly if necessary) to the 
point cloud. The roll and pitch of the camera are the two 
angles the describe the relationship between the camera 
optical axis and the surface normal of the plane. Height 
above the surface can come from a direct altimetry 
measurement or it can be computed from the camera roll and 
pitch and a slant range to the surface. 

The DEM is generated as follows. The 3D points in the 
point cloud are transformed to the surface fixed frame. Next, 
the horizontal bounding box that contains all of the points 
is determined and its area A is computed. If there are N 
points, the size s of the bins in the digital terrain map is set 
such that s = JA/N. With these settings, the DEM will 
cover roughly the same extent as the point cloud data and 
each grid cell will contain approximately one sample. Once 
the bounds and bin size of the elevation map are determined 
and the points are in the surface fixed frame, the DEM is 
generated using the same procedure as described in [5] .  
Stated briefly, for each point, the bin in the DEM that the 
point falls in is determined and then bilinear interpolation of 
point elevation is used to deal with the uneven sampling of 
the surface by the point cloud data. Fig. 4 shows two views 
of the DEM generated by this process for the feature tracks 
shown in Fig. 3. 

111. HAZARD DETECTION AND AVOIDANCE 

Steep slopes, rocks, cliffs and gullies are all hazards for 
landing. By computing the local slope and roughness, all of 
these hazards can be detected. We use the algorithm 
described in [ 5 ]  to measure slope and roughness hazards. 
The algorithm proceeds as follows. First the DEM is 
partitioned into square regions the size of the lander 
footprint. In each region a robust plane is fit to the DEM 
using least median squares. A smooth underlying elevation 
map is generated by bi-linearly interpolating the elevation of 
the robust planes at the center of each region. A local 
roughness map is then computed as the absolute difference 
between DEM elevation and this smooth underlying terrain 
map. Slope is defined as the angle between the local surface 
normal and vertical; each robust plane has a single slope. A 
slope map is generated by bi-linearly interpolating the 
robust plane slope from the center of each region. 



The lander will have constraints on the maximum slope 
and maximum roughness that can be handled by the 
mechanical landing system. These thresholds are set by the 
used. At the top of Fig. 5 the elevation map, roughness map 
and slope map are shown for the terrain shown in Fig. 4. 
For the elevation map, dark corresponds to high terrain and 
bright corresponds to low terrain. For the slope and 
roughness maps, green corresponds to regions that are well 
below the hazard threshold, yellow is for regions that are 
approaching the threshold and red is for regions that are 
above the threshold. 

roughness 

Rcc: unsafe, Grec?: safe. 
Black X a-priori landing site, P!ur:do +: selected safe 5ite 

: unknown 

Fig. 5 Hazard detection and avoidance maps. 
Selection of the safe site starts by generating binary 

images from the slope and roughness maps; parts of the 
maps that are above the threshold (hazards) are positive 
while parts that are below are negative (not a hazard). The 
roughness and slope hazards are grown by the diameter of 
the lander using a grassfire transform applied to each map. 
The logical-OR the grown slope and roughness hazard maps 
creates the safe landing map. A safe landing map is shown 
in Fig. 5 where safe areas are in green, hazardous areas are 
in red. Near the border and near holes in the map where there 
is no elevation data, it is unknown if a hazard exists. These 
regions are considered hazards, but are marked yellow in the 
safe landing map. 

A grassfire transform is applied to the safe landing map 
and the bin that is farthest from all hazards is selected as the 
landing site. If there are multiple bins with the same 
distance from hazards then the one closest to the a-priori 
landing site is selected. An a-priori landing site is the site 
that the lander will land at if no other information is 
available (Le., if hazard detection fails to converge). On the 
safe landing map in Fig. 5 the a-priori landing site is 
marked as a black X and the selected safe site is shown as a 
purple +. At the bottom of Fig. 5 the safe landing map is 
shown texture mapped onto the terrain data from Fig. 4. In 
this figure it is obvious that the safe site was selected in a 
low slope and low roughness region. 
TABLE I EXAMPLE ALGORITHM RUN TIMES (FOR GIVEN PARAMETSRS) 

ON A 400 MHz R12000 PROCESSOR 

The run time for each stage of the algorithm on an SGI 
0 2  with a 400 MHz R12000 are shown in TABLE I. As can 
bee seen from the table, the total processing time is less 
than one second. 

IV. JPL AUTONOMOUS HELICOPTER TESTBED 

The JPL Autonomous Helicopter Testbed (AHT) is a 
twin-cylinder, gas powered radio-controlled model helicopter 
approximately 2 meters in length and capable of lifting 
approximately 9 kg of payload. Onboard avionics include a 
PC/lO4-based computer stack running the QNX RTOS, 
(700 MHz PI11 CPU with 128Mb DRAM and 128 Mb flash 
disk), NovAtel RT2 GPS receiver, Inertial Sciences ISIS 
IMU, Precision Navigation TCM2 compass & roll/pitch 
inclinometers, and downward-pointing MDL ILM200B laser 
altimeter and a 640-480 Sony XC-55 progressive scan 
grayscale CCD camera. A Dell Inspiron 8200 laptop 
functions as a ground station used to send high-level control 
commands to, and display telemetry from, the JPL AHT as 
well as being a conduit for differential corrections from a 
NovAtel RT2 GPS basestation receiver to the JPL AHT. 
Communication between the laptop and AHT is achieved 
using a 2.4 Ghz Wireless -G Ethernet link. 

Fig h Thc J P L  Autonomous flclicopier rcstbcd 
An error-state Kalman filter [ 111 produces state 

estimates used for the control of the ANT. The state of the 
filter is initialized using inputs from the compass & 
inclinometers (orientation) and GPS. (position). Once 
initialized, the filter state is updated using inputs from the 
above mentioned sensors as well as the gyro rates and 
accelerations from the IMU. 

Autonomous flight is achieved using a hierarchical 
behavior-based control architecture [7]. A behavior-based 
controller partitions the control problem into a set of loosely 
coupled behaviors. Each behavior is responsible for a 
particular task. The behaviors act in parallel to achieve the 
overall goals of the system. Low-level behaviors are 
responsible for functions requiring quick response while 
higher-level behaviors meet less time-critical needs. For 
example , the low-level roll control behavior is responsible 
for maintaining a desired roll angle while the high-level 
navigation behavior is responsible for achieving a desired 
GPS waypoint location. 

v. SAFE LANDING EXPERIMENTS 

A total of four successful autonomous landings were 
achieved on two separate days, one on the first day of 
testing and three on the second. The landings were achieved 
in unknown, hazardous terrain using the following 
procedure. The helicopter is commanded to fly laterally 
over the terrain while maintaining its current altitude. 
While in transit, 40 images of the terrain below the 
helicopter are gathered over the course of several seconds by 
the onboard downward-looking camera. Two images for 
hazard detection are chosen from these 40 images with the 
criteria being a function of the baseline (larger baseline gives 
better stereo ranging) and amount of overlapping terrain 
(larger overlap increases number of features to track) between 
the two images. 



if a safe site is located by the hazard detection and 
avoidance algorithm, the pixel coordinates of this safe site 
are transformed into GPS coordinates. This transformation 
is made possible due to the fact that the 6DOF state of the 
helicopter plus the laser altimetry range to the ground is all 
gathered when each image is captured. Once the GPS 
coordinates are computed, they are passed to the navigation 
control behavior of the AHT and it guides the helicopter to 
the desired GPS coordinates. Once the AHT is within a 
predetermined threshold of these coordinates (currently 2 
meters), the AHT descends maintaining a desired vertical 
descent velocity while continuing to attempt to reduce the 
error between its current GPS position and desired position. 
Once the AHT is within a predetermined distance threshold 
above the ground (determined from laser range 
measurements and currently set at 1.5 meters), the AHT 
slowly changes the pitch of the main blades on the 
helicopter to effect a smooth landing at the safe site. 

TABLE I1 gives the results from the 4 successful 
landings of the AHT in unknown, hazardous terrain. 
Unfortunately, the results from the second run are missing 
but the position error is on the same order of magnitude as 
the other 3 runs. This position error is the Euclidian 
distance between the desired GPS northing and easting 
values and the actual GPS northing and easting 
measurements provided by the GPS receiver on board the 
AHT. In addition to the northing and easting 
measurements, the GPS receiver also provides estimates of 
the standard deviation for each individual northing and 
easting measurement. These standard deviations are given 
because the position error is a direct function of how 
accurate the GPS measurements are at the time the error is 
computed. In the results below, dozens of measurements of 
the values reported are taken after the AHT has successfully 
landed and averages computed to smooth out variations 
from one measurement to the next. The table also shows 
that all run-times took less than 2 seconds. 

TABLE 11 
Position I Northing Std. I Eating Std. I Run I 

SAFE LANLXNG ACCURACY RESULTS 

VI. CONCLUSION 

Currently, our system relies on GPS to navigate for 
landing. We our working on methods for GPS denied safe 
landing based on using visual navigation. In addition to 
image-based motion estimation, some of the techniques we 
are currently pursuing are landmark recognition for position 
estimation during landing and landing site visual servoing. 

The main commercial application of this technology is 
autonomous navigation of unmanned aerial vehicles for 
military, search and rescue, fire fighting and surveillance 
applications. This technology could also be used directly by 
autonomous underwater vehicles for seafloor exploration 
with applications to the search for oil and other natural 
resources and scientific discovery for geology, biology and 
chemistry. 
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