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Abstract-Accurate assessment of potentially damaging 
ground hazards during the spacecraft EDL (Entry, Descent, 
and Landing) phase is crucial to insure a high probability of 
safe landing. A lander that encounters a large rock, falls off 
a cliff, or tips over on a steep slope can sustain mission- 
ending damage. Guided entry is expected to shrink landing 
ellipses from 100-300 km to -10 km radius for the second- 
generation landers as early as 2009. Regardless of size and 
location, however, landing ellipses will almost always 
contain hazards such as craters, discontinuities, steep slopes, 
and large rocks. It is estimated that an MSL (Mars Science 
Laboratory)-sized lander should detect and avoid 16- 150m 
diameter craters, vertical drops similar to the edges of 16m 
or 3.75m diameter crater, for high and low altitude HDA 
(Hazard Detection and Avoidance) respectively. It should 
also be able to detect slopes 20' or steeper, and rocks 0.75m 
or taller. In this paper'*2 we will present a passive imaging 
based, multi-cue hazard detection and avoidance (HDA) 
system suitable for Martian and other lander missions. This 
is the first passively imaged HDA system that seamlessly 
integrates multiple algorithm-crater detection, slope 
estimation, rock detection and texture analysis, and multi- 
cues-crater morphology, rock distribution, to detect these 
hazards in real time. 
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1 e INTRODUCTION 

With the current EDL (Entry, Descent, and Landmg) 
capability, a spacecraft lands somewhere within a very large 
landing ellipse. The Viking landers (1976), Mars Pathfinder 
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(1997), Mars Polar Lander (1999), and Mars Exploration 
Rovers (2003), had landing ellipses on the order of 100-300 
km long. Guided entry is expected to shrink landing ellipses 
to -10 km in radius for the second-generation landers as 
early as 2009. However, even if a landing ellipse is only a 
few kilometers long, it is very likely to contain hazards such 
as craters, discontinuities, steep slopes, and large rocks, 
regardless of how the ellipse is selected. A lander that 
encounters a large rock, falls off a cliff, or tips over on a 
steep slope can sustain mission-fatal damage. 

Most importantly, the scientifically interesting sites are most 
likely near craters, ridges, fissures, and other relevant 
geological formations, the same features that can be 
considered hazards. To ensure a safe landing one must either 
choose a precise landing at a pre-selected safe site, or real- 
time HDA or a combination of both. 

An HDA system can use an active sensor, such as scanning 
laser radar (LIDAR) or phased array terrain radar (PATR), 
or, it can use a passive sensor such as a camera. Active 
sensors tend to be favored because they can directly measure 
the depth of sensed terrain and are less sensitive to 
atmospheric opacity. Also, the algorithms to interpolate 
these data are relatively simple and fast. Active sensors 
however are costly, heavy (6-25 kg), and have high power 
requirements (40-200 w). Active sensors have low 
resolution (40x40-100x100), a narrow FOV (field-of-view) 
(15"-40') and high volume (2-40 L). In contrast, flight- 
qualified passive sensors (cameras) are affordable and 
lighter (0.3 kg), consume less power (13 w), and have higher 
resolution (1024x1024), a wider FOVs (e.g. 120'), low 
volume (2 L) and a greater sensing range. Passive sensors 
however, work only during the daytime and algorithms may 
have seasonal requirements to handle dependencies on sun 
position and signal contrast attenuation from dust storms. 
Such storms on Mars, however, are seasonal and regional, 
and even under such conditions, the chance of high levels of 
obscuration are less than 1% [l]. 

The four types of hazards under consideration are shown in 
Figure 1. Craters of varied sizes are ubiquitous on places 
like Mars. Of most concern are the small impact craters (< 5 
km in diameter). A lander can fall off a crater rim, tip over 
on a steep slope in the crater bowl, have limited 
communications while sitting at the bottom of the bowl or 
become trapped inside. Smaller missions that may land with 
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significant horizontal velocity could also damage themselves 
by impacting a steep crater wall. For an MSL-sized lander, 
safe landing guidelines require HDA to detect 16-150 m 
diameter craters. Steep Slopes are large, relatively non-level 
planar regions. Current guidelines dictate that slopes >20° 
should be detected and avoided. Landers can tip over, take 
damage and pin parts in unusable positions. Steep slopes 
may mislead a radar altimeter that interprets fEst-return as 
vertical. Underestimates like these can cause propellant mis- 
management. Discontinuities in terrain are areas where 
elevation changes significantly over a short distance, as in a 
cliff or ridge. A small lander with significant horizontal 
velocity could impact a discontinuity or tumble over it and 
impact the ground below. A larger lander could tip while 
landing on a discontinuity or while deploying mechanisms 
after landing. MSL-type safe landing guidelines indicates 
discontinuities similar in size to the wall of a 16 m-diameter 
crater (from hgh altitude) or a 3.75 m-diameter crater (from 
low altitude) should be detectable. 

Figure 1. Craters, Discontinuities, slopes, and rocks. 

Rocks that are not Parge enough to tip a lander are still a 
concern. A legged-lander may high-center on a large rock 
during landing, causing an unstable landing and may impact 
the lander underbelly and the foot stabilizers. MSL-type 
HDA must detect rocks 0.75m tall and safe landing 
guidelines require 99% detection rates and c: 1% false alarm 
rates. 

Current vision-based HDA algorithms are slow and exhibit 
incomplete detections. In this paper we present an integrated 
HDA system that improves on both aspects. The algorithms 
for detection of craters and slopes have been described in 
detail elsewhere [2, 31 and are only summarized here. The 
more recent developments on rock detection are described in 
detail using laboratory imagery, and earth imagery of similar 
characteristics as those on Mars. 

2. PREVIOUS WORK 

The only vision system used for planetary spacecraft safe landing 
is the Descent Image Motion Estimation system (DIMES) for the 
Mars Exploration Rovers (MER) mission [4]. DIMES uses two 
descent images, and IMU and an altimeter to estimate horizontal 
velocity of descending spacecraft [4, 51. No space mission has 
however attempted autonomous, vision-guided safe and 
precise landing, and we are not aware of a complete vision- 
based safe-landing system which can satisfy, say, Martian 
EDL requirements. However, several relevant developments 
have been reported. They are illustrated and compared in 
Table 1. The speed performance column in the table does 
not represent a formal comparison but gives an idea of the 
order of magnitude of performance. A visual method 
supported by an angular sensor to provide position 
measurements was suggested in [6]. A texture analysis (TA) 
scheme for autonomous helicopter safe landing was reported 
in [7]. A structure-from-motion (SFM) method for rock and 
slope HDA was proposed in [6, 71. SFM reconstructs 3-D 
surface topography from multiple descent images in four 
steps. First, feature “windows” are selected in the first 
image. Second, matching windows are located in later 
images. Third, the spacecraft motion between the images is 
estimated independently. Fourth, triangulation is used to 
determine the 3-D position of the feature windows that 
accounts for their 2-D motion under the estimated spacecraft 
motion. Landing hazards such as the craters, steep slopes, 
and rocks, can be detected in the resulting 3-D surface map. 
Current approaches of SFM have computational costs that 
make unsuitable for reconstruction of natural terrain during 
landing; it typically can take several seconds to process a 
pair of images. Another deficiency is that the algorithms 
cannot recover the surface model at the focus of expansion 
of a moving camera 

A homography-based slope estimation (HSE) scheme was 
suggested in [lo] by one of the authors and it is summarized 
below in Section 4. Shape-from-shading (SFS) [l 11 recovers 
surface shape from an image and a known lighting direction. 
Under consistent illumination, a Lambertian surface with 
constant albedo reflects intensity as a function of the angle B 
between surface normal and lighting direction. One variation 
of SFS maps image intensity to 0 using a scene of known 
geometry, and then uses the map to quickly recover B at each 
pixel in later images. It then funds surface normals at each 
pixel that maximize some constraint, such as surface 
smoothness, subject to the 0s. Finding surface normals can 
be slow and may underestimate the texture of a surface. In 
order to reconstruct the surface well, the surface albedo must 
to be uniform, which is not the case for Mars [12. 131. The 
large albedo variation of Martian surface and slow speed 
makes the SFS a less desirable option for EDL. However, 
some of its concepts are useful to help detect slopes. 

In summary, these approaches suffer from low speed and 
incomplete detection. The high resolution, say 1024x1024, 
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of a camera facilitates hazard detection and image based 
HDA algorithms typically require two images to reconstruct 
a surface model. Current flight processors are slow and to 
handle such a large data volume in real-time will require 
some innovation. Another drawback of current algorithms is 
that they focus on detecting one type of hazard, whereas the 
Multi-cue HDA (MC-HDA) safe landmg system described 
here detects all types of potentially fatal hazards. 

I 

Table 1. State-of-the-Art in Hazard Detection 

I 

Lastly, the detection of shadows from overhead imagery has 
been shown to be very useful to detect and verify detection 
of building structures [14, 151 from monocular and multiple 
aerial images. We are not aware of a system that use 
shadows to detect natural rocks from aerial images. 

3. APPROACH 

The Multi-Cue Hazard Detection system operates in four 
stages as illustrated in Figure 2: 

A. Survey stage. During early parachute descent, the system 
starts analyzing descent imagery. Initially only large, salient, 
craters are quickly located. Next, the intensity gradient 
across these craters is compared against an ideal crater 
model [ 161 to calibrate a “slope-from-shading” and 
“intensity-to-angle” map. This map in effect relates surface 
topography to pixel intensities. 

B. Regional hazard detection stage. During late parachute 
descent or ensuing powered descent, the system detects 
regional hazards, such as large craters, discontinuities, and 
steep slopes. This involves three algorithms. First, the 
system uses the intensity-to-angle map calibrated in the 
survey stage to identify pixels on steep slopes facing toward 
or away from the sun. These areas may represent ridges, 
hills, or deformed craters. Second, the system carries out 
crater detection to identify craters. It uses the crater slope 
model and rock distribution models to identify hazards on 
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the outer slope of the craters. Results of the first two 
algorithms are used to mask off detected hazards, reducing 
the search scope (and processing time) of the detection 
algorithms. Third, the system employs image homography 
techniques to estimate the surface flatness and slopes of 
potential landing sites. From these three algorithms, the best 
landing region, typically much bigger than the landing site, 
is selected and then the spacecraft can proceed to maneuver 
toward the best region. 

C. Local hazard detection stage. In the final descent, the 
system detects local hazards such as small craters and rocks. 
This involves three algorithms. First, texture analysis looks 
for discontinuities and rocks in areas that have not yet been 
identified as hazards. This step uses image histograms, 
crater and rock distribution models, and similar metrics 
found and carried over from the first two stages, saving 
computation time. Second, rock detection algorithms look 
for large rocks. The first uses a combination of texture 
analysis and the intensity-to-slope map for detecting steep 
rock faces. The second detects individual rocks from their 
shadows. Third, HSE searches supposedly hazard-free areas 
to identify additional slopes that slope from shading and 
crater detection did not locate earlier. To improve 
performance potential landing sites can be chosen and 
ranked before some algorithms are applied to eliminate 
unacceptable candidates. 

D. Site selection stage. A site selection algorithm typically 
chooses the “safest” site on a hazard map. Previous work 
[ 17, 181 has investigated combining multiple information 
sources into a hazard map for this purpose. Our system does 
not produce a hazard map. It identifies candidate sites early 
and aims to maintain speed performance by selectively using 
algorithms to eliminate hazard areas and selecting only 
promising areas for fiu-ther processing. 

4. HOMOGRAPHY SLOPE ESTIMATION (HSE) 

HSE estimates the slope of surface patches seen in a pair of 
images using the homography transform, depicted in Figure 
3, an example of the HSE of the Mars Exploration Rovers 
(MER)-A descent images. The homography coordinate 
transform describes how translation, rotation, and 
perspective projection of a planar surface patch modify the 
shape and location of patch from the first image to the 
second. The transform parameters encode the surface 
normal of the patch and the motion of the camera between 
images (See Figure 3.) 

An HSE algorithm [SI has been developed with support 
from the JPL’s Mars Technology Program. The algorithm 
operates in three steps. First, relatively featureless ( ie . ,  
planar) patches, which should make good landing sites, are 
selected from one image. 



(2) Contrast analysis. Use crater model to map intensity to 
slope inside craters and in shadow of steep slopes (1)Detect 

many craters 

Crater Profile Model G 
(5) Combine intensity-to-slope models, 

identify high-slope areas (hazards) 
outside identified craters, and 
identify landing sites with no hazards. 

Later image 

(4) Use homography transform to 
find slope in flat areas, and 
map intensity to slope outside craters 

(6) Detect rocks at low altitude 
using contrast and slope info 
from step 2 and 4. 

(3) Identify low texture areas, which 
are likely flat and rover-friendly 

Figure 2. The Multi-Cue Hazard Detection algorithm operates in multiple stages. 

Figure 3. Homography-based slope estimation (HSE) 

Secondly, a Levenberg-Marquardt iterative algorithm [ 191 is 
applied to locate the patches in the second image and the 
homography transforms that describe their new shape and 
position. Third, the parameters of each homography 
transform are analyzed using multiple homographies to 
extract spacecraft motion (both rotation and translation) and 
the surface normal at each patch. 

HSE is the fastest method available for slope estimation but 
it is still rather slow (0.3 Hz in the current implementation) 
and is unstable at the focus of expansion. Under ideal 
circumstances, it can effectively determine the slopes of 
selected patches. Unlike SFM, it does not generate a dense 
surface map, so it cannot be used to detect other hazards 

HSE estimates the slopes of several patches. The most 
suitable landing site is selected by considering their slopes, 
local texture, the SSD (sum of squared differences) 
matching residual as well as spacecraft maneuvering 
capability. On the other hand, because the relative motion 
between two images is also determined, the spacecraft 
horizontal velocity can be also obtained. This scheme can be 
considered a next generation of the DIMES system. 

5. CRATER HAZARD DETECTION (CHD) 

CHD recognizes craters in an image. A crater, in general, is 
a bowl shaped depression created by collisions or volcanic 
activity. A typical crater in an image has an elliptical rim 
surrounding a bright-to-dark shading pattern dictated by the 
lighting angle and the crater’s topography. These 
distinguishing characteristics are used extensively in crater 
detection. 

One of the authors participated in the development of a 
crater detection algorithm [9, 101 for spacecraft optical 
navigation. The algorithm has been tested successfully for 
autonomous orbit determination. On imagery from MOC 
(Mars Overhead Camera), Odyssey, NEAR Eros, and others, 
its overall detection rate is better than 94% and false alarm 
rate is less than 5%. Most falsely detected craters are those 
topographic features that are similar to craters. The 
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algorithm consists of five stages [9]. A sample result is 
shown in Figure 4. First, Canny edge detection locates 
image edges that could correspond to crater rims. Second, 
edges that may belong to the same crater are grouped. 
Third, an ellipse is fit to each edge group. Fourth, ellipses 
are refined using the original, intensity image. Fifth, a 
confidence value is assigned to each crater. 

Figure 4. An crater detection example on a MER-A 
descent image. 

The crater detection algorithm has also been shown to be an 
ideal solution for crater landmark recognition and matching, 
when a landmark map is available. It can be used for 
spacecraft localization either during orbiting or while 
descending [2, 9, 10,201. Here it is applied for crater hazard 
detection for safe landing. The detected craters not only 
provide the locations of crater hazards but also provide 
image photometric cues such as contrast between lit and 
shadowed areas as discussed earlier. These are useful to the 
rock detection and Parge discontinuity detection algorithms. 

6. ROCK DETECTION (RD) 

A number of rock detection techniques are currently under 
study at JPL to show the feasibility of rock detection based 
on shadows, on texture analyses, on elevation mapping in 
visible imagery, and also based on contrast between rocks 
and soils in thermal imagery. These algorithms can be 
applied at different altitudes in a cooperative manner. Here 
we focus on the use of shadows to detect the rocks. 
Shadows in visible imagery enable reliable rock detection 
over a range of solar incidence angles. Image texture 
analysis may enable detecting rocks for a broader range of 
sun angles if needed. 

The rock detection algorithm has two phases: shadow 
detection and rock modeling. We have tested two algorithms 
for shadow segmentation and two algorithms for rock 
modeling. The height of the rocks is the critical 
measurement and can be determined form the length of the 
shadow region along the direction of illumination as a 
function of  the sun incidence angle. The resulting rock map 
can then be analyzed for safe landing site selection. 

6.1 Shadow Segmentation 

The fnst step is to extract the shadow regions fkom the 
image. Many algorithms for region segmentation have been 
reported in the literature over the years. Some of these 
algorithms attempt to group pixels based on criteria that 
defines the level of uniformity of the pixels in the regions. 
Others use gray-scale morphology to segment specific 
regions from the background. At the other end, a number of 
thresholding techniques have been developed to segment the 
images into foreground and background classes. All these 
technique iterate in some form to achieve the result. We 
have studied several techniques and have selected two to 
implement and test: K-means clustering which iterates on the 
image intensities and Maximum Entropy Thresholding 
(MET) which iterates on the image histogram. 

6.1.1 K-means 

The K-means clustering algorithm [21, 221 is one of the 
simplest unsupervised learning algorithms that solve the well 
known clustering problem. It differs from the more general 
hierarchical clustering methods in that, the number of 
desired clusters, K, is given in advance. Unfortunately there 
is no general theoretical solution to find the optimal number 
of clusters for any given data set. A simple approach is to 
compare the results of multiple runs with different K classes 
and choose the best one according to a given criterion. The 
goal is to divide the image pixels into K clusters such that 
some metric relative to the centroids of the clusters is 
minimized. Various metrics to the centroids that can be 
minimized, for example, the maximum distance to its 
centroid for any pixel; the sum of the average distance to the 
centroids over all clusters, the sum of the variance over all 
clusters, and the total distance between all pixels and their 
centroids. The metric to minimize and the choice of a 
distance measure will determine the shape of the optimum 
clusters. K-means produces hfferent clusterings depending 
on the initial cluster assignments. In our experiments so far 
we randomly assign each pixel to one of the K clusters. The 
position of the K centroids is determined as the value of the 
metric to minimize. In summary, the algorithm aims to 
minimize an objective function, in our case, a squared error 
function: 

2 
where 1 1 ~ ~ ’ )  - cjl( is a chosen distance measure between a 

pixel x;’) and the cluster center c j ,  is an indicator of the 

distance o f  the n pixels from their respective cluster centers. 
Although it can be proven that the procedure will always 
terminate, the K-means algorithm does not necessarily find 
the most optimal configuration, corresponding to the global 
objective function minimum. The algorithm is also sensitive 
to the initial randomly selected cluster centers. Typically the 
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K-means algorithm is run multiple times to reduce this 
effect. The strong saliency of the shadows in our imagery 
however, makes multiple runs unnecessary. 

6.1.2 gMET 

Maximum Entropy Thresholding (MET) is an automatic 
thresholding technique based on the maximum entropy of 
the image histogram [23, 241. MET maximizes the inter- 
class entropy. Entropy measures the uncertainty of an event 
and is defmed as: 

where p is the probability of a pixel grayscale value, i, in the 
image. The apriori entropy of the image is then: 

i = O  

Let bo represent the class of background pixels and bl the 
class of shadow pixels. Then we have that: 

255 

Hb, ( t )  = - C log, - pi  ,where 
i = t + 1 ~ ( 4 )  P@,) 

Now, let the information between the two classes be: 

The MET algorithm selects the threshold t* at which 
@(t*) is maximum and work well when the image has a bi- 

modal histogram, that is a single zone of high entropy. Since 
this condition is not likely to be always true for the scenes 
under consideration we apply the following transformation 
to the image intensities: 

Let I be a graylevel image. The image Ig given by 
Ig = I’ + I  now consists of an image where the shadow 

regions have been enhanced by gamma correction (hence the 
term gMET) and the background has been saturated. Such 
an image has a bi-modal histogram with a single high 
entropy region in the histogram. An example is illustrated in 
Figure 5.  A small 320x360 portion of one of our large test 
images and its histogram are shown in Figure 5a and Figure 
5b respectively. The modified image and its histogram are 
shown in Figure 5b and Figure 5d respectively. 

a 256 

(b) Modified image 

F l  

0 2% 
(c ) Original histogram I (d) Modified histogram 

Figure 5. BMET histomam modification. 

The shadows detected in our example in Figure 5 by 5- 
means and by gMET are shown in Figure 6a and Figure 6b 
respectively. In order to determine the appropriate number 
of clusters for K-means and the level of gamma correction 
for gMET we selected eight images from a data set (see 
Section 6.3.2 below) for eight different sun angles and 
registered them manually. We also constructed manually a 
ground truth from one of the images to determine rock 
detection and false alarm rates. Many small rocks are not 
present in the ground truth and the registration among the 
eight images is not perfect. The data however has been 
useful to conduct preliminary evaluations. We carried out 
rock detection experiments varying the number of clusters 
from 2 to 9 for K-means, and the level of gamma correction 
from 2.0 to 9.0 for all eight scenes and used the shadows 
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detected to model the rocks. The rock models derived from 
the shadows were compared against a ground truth (shown 
later in Section 6.3.2) to estimate detection and false alarm 
rates. The results were used to determine an appropriate 
number of clusters for K-means shadow segmentation, and 
the appropriate gamma value for gMET shadow 
segmentation. Figure 7 shows the ROC curves for all eight 
images of the same scene, with varying illumination angles, 
using 5-means for shadow extraction. 

rock detection technique suggests using 5-means or 6- 

The area under the ROC curves for all scenes and cluster 
combinations is shown in Figure 8. It suggests using five 
clusters performs best for this dataset. The areas under the 
ROC curves for the gMET method suggest gamma 
corrections of 6.0 to 9.0 for high contrast images. The 
selected parameters correspond to the Mars Hill data set 
described below in more detail in Section 6.3.2. The 
algorithm behaviors indicate that the sensitivity to the 
parameters is not crucial, and we have applied these settings 
to scenes in two other datasets. 

None of the tested datasets however include imagery 
corrupted by noise of having dynamic range and contrast 
degradations due to sand storms or other atmospheric 
phenomena. We have manually produced images having 
such contrast variations in order to determine the 
compensation needed for K-means and gMET parameters. 
Figure 9 illustrates a moderate, a severe, and a very severe 
contrast alteration of the image shown earlier in Figure 5,  
and the shadow regions extracted from them by our two 
algorithms with the adjustments needed to compensate. Note 
that contrast information is available early through the first 
two stages of decent described in Section 3 above. 

6.2 Rock Modeling 

The critical measurements for EDL are the rock heights. 
Note that the aim is not to model the rocks in terms of a 
perfect and accurate delineation of the rock volume nor even 
an accurate delineation of its largest 2-D horizontal cross- 
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section. The goal is to derive a very good estimation of its 
height together with a good approximation of its location, 
and a reasonable approximation of its 2-D horizontal cross- 
section. 

ROC Curve Rock Area Evaluation - No Clusters 5 . .. 

m e l  i I 3-45 is5, I 
1 .~ 

0 0.2 0.4 0.6 0 8  1 
Area Elements False Alarm Rate (“A) 

Figure 7. ROC curves for experiments using five clusters. 
The legend designates the image labels and the sun elevation 
angles in parentheses. 

Q 01 

Area Under ROC Cunes 

’s 

Number of Clusters 
Figure 8. The area under the ROC curves illustrate a steady 
performance staring at 5 clusters. 

6.2.1 Shadow Analysis 

Figure 10 illustrates the rock-shadow measurements that can 
be made and inferred from the shadow of a rock. The 
farthest point from the rock laying on the shadow boundary 
along the direction of illumination is cast by the highest 
point on the rock. These corresponding pair (blue dots in 
Figure 10) gives the true shadow length. The shadow 
boundary corresponds to the projection of the shadow 
casting boundary, the tangential profile on the surface of the 
rock. The highest point on the rock lies on this boundary 
(between the pink dots.) Part of the shadow may lie on the 
rock itself, part on the adjacent terrain and part on other 
rocks. 

The width of a rock is given by the surn of the distances (w, 
and w2 in Figure 10) from the sun ray passing through the 
highest point and the two farthest points in the shadow 
boundary in the direction orthogonal to the sun ray. The 
region corresponding to the self-shadow is usually not 
measurable (green text) as the contrast of the rock boundary 



in the shadow is likely to be low. The actual center (of mass) 
of the rock is also not measurable directly. Our algorithm 
measures only the length of the shadow, and the width of the 
shadow for large shadow regions that may correspond to 
very large rocks or boulders. 

1 (b) Severe 
I 

c) Very severe P--- 

(d)4-means I (e) 4-means 
' I  

variation. Shadow contrast can be estimated durinj 
descent form higher altitude images. 

Cast Illumination 

Figure 10. A rock, its shadow and their models 

To improve performance, for most rocks we approximate 
the shadow region by a best-fitting ellipse (Figure 10, right), 
and use its parameters to derive the rock model. A best- 
fitting ellipse [25] equates the second order central moments 
of the ellipse to those of the distribution of the pixels in the 
shadow region, and thereby effectively defines both the 
shape and size of the ellipse. The projection of the 
appropriate ellipse axis onto the sun ray passing through its 
center gives the shadow length. This may over- or under 
estimate shadow lengths of small rocks, which is not crucial. 
For large rocks however we are comparing this elliptical 
approximation with the shadow length actually measured 
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from analysis of the shadow region itself. The shadow width 
(and hence the rock width) is given by the length of the other 
ellipse axis. In a detailed analysis, the center of the rock, 
and hence its position, can be estimated by offsets from the 
highest shadow casting point. These offsets currently are a 
h c t i o n  of the distance between the points where the w1 and 
w2 measurements are made. In the simpler model the center 
of the rock is given by the extreme of the shadow ellipse 
(Figure 10, right). The rock itself is modeled by an ellipse 
with one axis accurately determined by the shadow width, 
and the other estimated by a simpler heuristic, a fraction of 
the rock width. The length pf the rock is not measurable 
directly and is estimated by a heuristic that is a fimction of 
the rock width. In simpler terms, the rock cross-section can 
be made to correspond to a circle having a diameter 
equivalent to the rock width. The rock height is given by the 
shadow length as a function of the sun incidence angle. 

In order to evaluate these measurements we are looking at 
the rock size-frequency distribution models that have been 
developed at JPL by Golombeck [25] and his colleagues. 
These include rock abundance and size distributions for 
Mars missions going back to the Vlking missions. For 
precise evaluation of height estimates we are constructing 
datasets and ground truth references at our Mars Yard 
facility. Height is the critical measurement and is affected by 
the accuracy at which we can measure shadow length. In 
general the length of the shadow is affected by light 
diffraction as a h c t i o n  of rock height and the roughness of 
the shadow casting profile. Secondary error effects are due 
to the line-spread function of the optics which blurs intensity 
boundaries. 

6.3 Experiments and Results 

We have tested our algorithms successfully with descent 
imagery from the near landing on the EROS asteroid, aerial 
imagery of "Mars Hill" in Death Valley, California, and test 
imagery from our Gantry facility. Next we present a 
representative sample. 

6.3. I .  EROS Results 

A sample 492x392 image from the NEAR descent image of 
the EROS asteroid is shown in Figure 11. The ground 
resolution is about 0.024 mpp. The sun incidence angle is 
45'. Rocks>4OO pixels are labeled hazards in red color. The 
shadow regions extracted by 5-means and gMET, shown in 
Figures l l b  and l lc ,  leading to similar rock models, as 
shown in Figures l l d  and l le .  The K-means algorithm is 
well established and gMET is new but much faster. We 
typically run both in all our tests as real-time considerations 
are most important. 

6.3.2. Mars Hills Experiments 

Aerial images of Mars Hill were acquired in 1989 to 
evaluate landing hazard detection algorithms. The site is 
useful because it has minimal vegetation and it has a rock 



distribution similar to that seen at the Viking 2 Mars landing 
site. We selected and registered eight images of the site for 
our tests and evaluations. Figure 12 shows one of such 
images. Processing these images at !4 resolution yields the 
typical results shown in Figure 13. Small 320x360 windows 
from this set were used in evaluation experiments. The 
window from the image in Figure 12 is shown in Figure 14a. 
The ground truth reference constructed by hand from this 
image is shown in Figure 14b. 

.. . I (b) 5-means shadow; 
I 

1 .  

(d) Rock models from (a). 

(b) shadows (y = 9) 
" T d '  

* *  

(e) Rock models from (c). 1 Figure 11. A 492x392 image of the descent into the 
EROS asteroid. Potential hazards are shown in red. 

I 

In our experiments for algorithm evaluation and rock 
detection performance evaluations we processed windows 
from eight images having different illumination and sun 
incidence angles. These help determine the effects of 
shadow blending and shadow region sizes as a function of 
the sun angles and the subsequent effects on the rock models 
generated. In general, shadow blending is not a major 
problem for sun incidence angles > 25" and < 75". 
According to previous studies [26] the expected rock size- 
distribution above 1.5 m follows a steep decrease with 
increasing diameter. In all our experiments we ran IS-means 
and gMET using eight combinations of clusters and gamma 
corrections. In all cases the darkest cluster from K-means 
corresponded to the shadow regions. For gMET the dark 
class always corresponded to the shadow regions. Figure 15 
shows representative results horn our experiments. In Figure 
15a the large rock is aligned with the small rock along the 
direction of illumination. If the shadows are blended, the 
height of the boulder may be overestimated. If they are not, 
the height of the boulder may be underestimated. In Figure 

15b the shadow of the boulder falls on smaller rocks with no 
consequences. In Figure 15c, the long shadows from a high 
sun incidence angle blend the boulder's shadow with that of 
the rocks in the shadow and with shadows from nearby 
rocks. Additional analysis of the shapes of the (large) 
shadows may be necessary to break the shadow regions. In 
the case illustrated the rock model is oversized in 2D but its 
height is accurate. In Figure 15d the illuminated surface of 
dark rocks may blend with their self-shadows resulting in 
overestimated rock heights. This condition can be handled 
by examining the shape of the shadow casting profile in 
more detail. Precise ground truth under construction will 
help quantify these effects better. 

Figure 2. 1600x1600 Rock field image from a set of eight. The 
large boulder on the top spans 80 pixels and a small 
320x360 window used in our examples below. 

Figure 13. Shadows from 5-means and rock moc.,.U 
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Rocks on 5-means shadows 

gMET shadows, y = 7 

iocks on 5-means shadows 

6.3.3 Gantry Experiments 

The Gantry data set consists of eight 1024x768 images of a 
1.0x0.75 m scene illuminated artificially to simulate sun 
incidence angles from 20" to 80". We also acquired laser 
scan data at 0.05" resolution for an initial evaluation of 
measured rock heights. The laser data turned noisy but 
useful to start characterizing height measurements accuracy. 
Other datasets are being currently constructed outdoors for 
this purpose. Figure 16a shows one of the images. The scene 
contains 47 small rocks (a few centimeters in diameter and 
height) having a variety of shapes, appearance and contrast. 
The ground truth was constructed by delineating the rock 
regions by hand and registering these with the laser scan 
data. 

(a) Gantry image at 1/2 
resolution (2 cdpixel) 
artificially illuminated 
with a 40" incidence brighter. 
angle. 
Figure 16. Forty-seven small rocks of varying shape, 
height, appearance, and contrast on sandy disturbed 
terrain. 

values encode height in 
mm. Higher points are 

(b) Ground truth. Pixel 

Figure 17a and Figure 17c illustrate 100% detection of the 
rocks using 5-means and gMET shadow detection 
respectively. In Figure 17b and Figure 17c we show 
overlays of the rock models and the ground truth. Note that 
only the tree buried rocks on the top left quadrant of the 
image are severely underestimated in size due the very small 
shadows they cast. The remaining of the rock are detected 
and positioned well. The red models correspond to small 
rocks and other marker objects not present in the ground 
truth. These typically will be filtered out on size. 

We are developing several performance evaluation methods 
to study rock detection performance in terms of global 
cumulative area element detection and false alarm rates, and 
in terms of individual rock detection and false alarm rates. 
Figure 18 illustrates some of these measurements for the 
result shown in Figure 17a. The plots show an example of 
absolute differences in height, width, and area for each rock. 
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(a) Detected rocks 
overlaid on 5-means 
shadow regions truth 

(b) Overlap of rock 
models in (a) with ground 

(c) Detected rocks (d) ) Overlap of rock 
overlaid on gMET models in (c) with ground 

Figure 17. In spite of the difficult scene, 100% of the 
rocks in the ground truth are detected. The footprint of 
the detected models illustrate good positioning. 

shadow regions truth 

10, 1 I I I I I I I I I 

$ 5  
r 

‘0 5 10 15 20 25 30 35 40 45 50 

0 
0 5 10 15 20 25 30 35 40 45 50 

z 
‘0 5 10 15 20 25 30 35 40 45 50 

Reference Rock 

Figure 18. Rock height is the critical estimate. Larger 
rocks produce very good estimates. The ground truth is 
shown in cyan bars and the measured estimates are 
shown in magenta. The average error in height for his 
example is 1.2 cm and 0.8 cm for the K-means and 
gMET shadows respectively. 

7. TEXTURE ANALYSIS (TA) 

We do not expect that a single natural hazard detection 
algorithm perform perfectly in terms of detection and false 
alarm rates. More than one algorithm however can cooperate 
to deliver very high detections. Our system uses in addition 
a TA algorithm to provide a protective layer between the 
hazard detection and fiial safe landing site selection. TA 
identifies smooth areas in the image, which are llkely to 
have fewer rocks (see Section 8 below) or other 
discontinuities, and can therefore increase the confidence on 
safer landing sites. Texture analysis can take many forms, 
such as thresholding on intensity variance, on spatial 
frequency coefficients, or maximum “blob size” over 
windows in an image. A simple texture analysis such as 

windowed image variance can efficiently find the smoothest 
area in an image - useful for avoiding rocks - but it cannot 
necessarily detect other hazards such as craters and slopes. 
A significant advantage of TA is that it can be implemented 
to run very fast thus affording multiple runs if necessary. 

8. LANDING SITE SELECTION 

The selection of a landing site is a continuous process. 
When the spacecraft is at a high attitude, between 10 and 2 
lan, the image resolution is not sufficient do detect small 
rocks. Large hazards such as craters and terrain 
discontinuities however can be detected at such altitude and 
a few very large terrain patches that are crater and 
discontinuity hee are selected. The patch selection criteria 
are based on low texture and a safe distance from large 
hazards. As additional descent imagery becomes available, 
these patches should be located in overlapping portions of 
the images to enable surface slope estimation. Figure 19 
illustrates an example from our Gantry dataset. 

Image 1 Image 2 

Rock map c \Texture map 

0 Landing Site Candidates 
Figure 19. The landing site is selected by considering 
the detected rocks, local texture, overlap between the two 
descent images. When the surface slopes are estimated, 
the final landing site can be selected from many patches. 
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9. REAL-TIME CONSIDERATIONS ACKNOWLEDGEMENT 

Earlier tests of shadow detection using k-means clustering 
runs in 0.22s on 768x764 pixel imagery on a 2.2 GHz 
Pentium 4 PC. We expect that thw can be sped up by 
accelerating k-means by using kd-tree data structures [27]. 
The kd-tree data structure is used to reduce the large number 
of nearest-neighbor queries issued by the traditional 
algorithm. Sufficient statistics are stored in the nodes of the 
kd-tree and then an analysis of the geometry of the current 
cluster centers results in great reduction of the work needed 
to update the centers. The technique described in [27] claims 
exact behavior as the traditional algorithm and suggest 
methods to initialize the K-means starting centers efficiently. 
Potential speedups for MET type algorithms are described in 
[2S] however we anticipate that the current algorithm can be 
implemented to run efficiently. 

At the MC-HAD system level hazards must be detected and 
characterized within the few seconds allowed for EDL. A 
number of factors however are taken into consideration. 
First, we take advantage of the much higher resolution and 
wider field of view than that available to from other sensors 
thus starting the image analysis early even if the actual 
landing site is not in view. Second, we have available 
considerable information on Mars geomorphology to 
provide apriori information that can be used to refine 
parameters and assist hture missions there. We also have 
the rock abundance and size-frequency distribution models 
[26], which are helphl to fine tune rock detection algorithm 
strategies. On the computing side, processed and labeled 
portions of the image can be skipped by subsequent 
processes. On the strategy side, we allow algorithms to 
cooperate and reinforce each others strengths. 

10. m T U R E  WORK 

Plans are underway to construct additional data sets at our 
Mars Yard facility and the appropriate “Ground truth‘’ rock 
distributions to quantitatively assess performance. We would 
like to be able to detect rocks 5 pixels across representing 1 
m diameter rocks at 1 lun altitude. This is consistent with 
conclusions of the MRSR study [29]. Since it is clear that 
large rocks are detected reliably, we can use rock diameter 
thresholds of 10 pixels in the 111 resolution image to 
approximate ground truth, then reprocess the images at half 
resolution to quantify performance against the results from 
the fd l  resolution image. We also expect that the system will 
be fast enough to enable multiple looks, which will increase 
the overall detection probability. 

The research described in this paper was carried out at the 
Jet Propulsion Laboratory, California Institute of 
Technology, funded by Mars Program under NASA Mars 
Exploration Program Advanced Technologies NRA OSS- 
03-01. 
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