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Motivation

The dynamics of polar motion (in the range of daily to sub-decadal

frequencies) is dominated by the Chandler wobble, a resonant os-

cillator excited by variations of atmospheric, oceanic, and ground

water origins. Understanding the origin of the excitation of the po-

lar motion including the Chandler wobble remains incomplete. A

simple stochastic model of the excitation function, such as a random

walk, is generally sufficient for operational earth orientation analyses

due to availability of various measurements for updates. More ac-

curate models are still desirable for short-term prediction, especially

during the observation voids between measurement epochs. More-

over, spacecraft navigation typically requires estimates of the earth

orientation parameters up to 7 days of lead time.

The goal of this study is in improvement of the short-term pre-

diction of the polar motion in the context of state-space modeling

suitable for the Kalman filter operations, such as the Kalman Earth

Orientation Filter (KEOF) at Jet Propulsion Laboratory. Empirical

periodicities are determined from an analyzed polar motion excita-

tion function time series, and these periodicities are to be extrapo-

lated in time. Fourier series expansion is a standard technique for

spectral analysis; however, the sinusoidal Fourier basis functions lack

the time-local specificity that is characteristics of the polar motion



time series. In particular, the magnitude, frequency, and phase need

to be allowed to vary slowly in time for an effective sinusoidal repre-

sentation for polar motion. While a variety of techniques are reported

in the literature for direct prediction of polar motion time series, this

report focuses on modeling and prediction of the excitation function.



Summary

Short-term forecast of the polar motion is considered by introducing

a prediction model for the excitation function which drives the polar

motion dynamics. The excitation function model consists of a slowly

varying trend, periodic modes with annual and several sub-annual

frequencies (down to the 13.6-day fortnightly tidal period), and a

transient decay function with a time constant of 1.5 days. Each

periodic mode is stochastically specified using an order-two auto-

regression process, allowing its frequency, phase, and amplitude to

vary in time within a statistical tolerance. The model is used to

time-extrapolate the excitation function series, which is then used

to generate a polar motion forecast dynamically. Skills of this fore-

cast method is evaluated by comparison to the C-04 polar motion

series in hindcast experiments. Over the lead-time horizon of four

months, the proposed method has performed equally well to some of

the state-of-art polar motion prediction methods, none of which fea-

tures forecasting of the excitation function. The annual mode in the

χ2 component is energetically the most dominant periodicity. The

modes with longer periods, annual and semi-annual in particular,

are found to contribute more significantly to forecast accuracy than

those with shorter periods.



Models

1. Polar motion (KEOF)

The polar motion p is represented by a fixed-period oscillator whose

amplitude and phase are modulated by the excitation function χ as

p +
i

σcw
ṗ = χ (1)

where i ≡
√
−1, ṗ ≡ dp/dt, σcw ≡ σ(1 + i/2Q) is the complex-

valued (damped) frequency of the Chandler wobble, p ≡ Px(t) −

iPy(t) where Px(t) and Py(t) are the x- and y-components of polar

motion, and χ ≡ χ1(t)+ iχ2(t) where χ1(t) and χ2(t) are the x- and

y-components, respectively, of the excitation function. The Chandler

frequency parameters used here are σ = 2π/433 cycles per day and

Q = 170 corresponding to a decay time of 64 years.

2. Excitation function analysis (KEOF)

χ1(t) = µ1(t) (2)

χ2(t) = S(t) + µ2(t) (3)

where µ1(t) and µ2(t) are random walk processes

µ̇j(t) = wµ
j (t), j = 1, 2 (4)



and S(t) is a stochastic oscillator given by

S̈ + αṠ + βS = ws(t) (5)

Above model is fine for analysis (data update); however, it leads

to a not-so-good prediction model:

χ1(t|t0) = µ1(t0) (6)

χ2(t|t0) = µ2(t0) + S(t|t0) (7)

where (t|t0) denotes “forecast for t ≥ t0 based on the data-updated

analysis up to time t0”. This forecast can be problematic because it

persists some instantaneous values of the random-walk processes.

3. Excitation function prediction

A more general model for the excitation function is

χj(t) = χj(t) +
Kj
∑

k=1
Sjk(t), j = 1, 2 (8)

S̈jk + αjkṠ + βjkS = ws
jk(t) (9)

where χj is the trend, ws
jk(t) are mutually independent white noise

processes, and αjk and βjk are given constants. The frequency and

other parameters for the periodic (and non-periodic) modes Sjk is

given in Table 1.



Results

• Hindcasting experiments have been conducted over a five-year

duration from 1 October 1995 to 30 September 2000. The C-04

daily polar motion time series analysis produced by the Inter-

national Earth Rotation Service is used as the ground truth in

the experiments. Forecasts of up to a 365-day lead-time are pro-

duced during the experimental period at a one-week interval,

resulting in 261 samples for each experiment. The root-mean-

squares (RMS) error between the forecast time series and the

C-04 analysis series is used primarily as the measure of accuracy.

• Figure 6 demonstrates that the periodic mode model for the

excitation function leads to significantly more accurate forecasts

of polar motion than the model designed for operational analysis

in KEOF. The RMS value of 2 mas at 5-day represents nearly

20% reduction in forecast error. At 20-day, the error becomes

less than half.

• Figure 7 demonstrates that a polar motion forecast method that

relies dynamically on a prediction of the excitation function (us-

ing the proposed periodic mode model in particular) can be just

as accurate as methods that are non-dynamic (i.e., functional ap-

proximation or statistical extrapolation applied directly on the



polar motion time series), especially for the short-term (less than

four months) forecast of our interest. Note that each error curves

have been computed under different experimental conditions in-

cluding the choice of time-windows; thus, comparison can be

made only approximately. See Figure 6 for some estimates of

the significant level.

• Figure 8 demonstrates that the modes with longest periods (an-

nual and semi-annual) and the smooth tapering mode (Langevin

process with time constant of 1.5 days) are the most important

components of the proposed excitation function model in terms

of accuracy of polar motion forecast. The tapering (dotted line)

displays its effectiveness only for the first 2-3 days. The positive

effects of the annual and semi-annual modes are evident even at

extremely short lead-times (by comparison of dash-dot and dot-

ted lines). The shorter periodic modes, including the fortnightly

periodicity, had small contributions to accuracy of the forecast.

• The prediction error is consistently lower for χ1 than χ2. One

reason for this is the asymmetry in the distribution of the con-

tinents and oceans on the global surface, so that the oceans can

contribute more on variations in χ1 than χ2. Note that χ1 affects

the accuracy of Py more than Px, while χ2 affects Px more.



χ1 χ2 period damping variance notes

yes yes 0 1.5 200 tapering process

yes yes 365.26 0 2× 10−6 annual mode

yes yes 182.62 0 2× 10−6 semi-annual mode

yes no 121.75 0 2× 10−6 ter-annual mode

no yes 60.88 0 2× 10−8

yes no 45.66 0 2× 10−8

yes no 36.53 0 2× 10−8

yes no 22.04 0 2× 10−8

yes yes 13.66 0 2× 10−8 fortnightly tidal period

Table 1

Parameters of the periodic and tapering modes. Whether or not the

particular mode is used for the given χ component is indicated by

“yes” or “no”. The units are “days” for the period and damping

time-constant and “(mas)2 per day” for the variance of the driving

process.



Figures

1. Time series of the χ1 component of the excitation function pro-

duced by KEOF (top panel, dashed line) and some of its additive

subcomponents: the 13.6-day period mode (second panel), the

annual and semi-annual modes (third panel, solid and dashed

lines respectively), and the Langevin process (bottom panel).

The units are “day” for the horizontal and “mas” for the vertical

axes. The dotted line on the top panel is the sum of all subcom-

ponents, demonstrating that the sum and the data (dashed line)

are nearly equal.

2. The same as Fig. 1, except that the χ2 component and its sub-

components are plotted.

3. Power spectral densities of χ1 (top) and χ2 (bottom) produced

by KEOF. The labeled peaks are used to identify the frequen-

cies of the periodic modes. The numbered labels are associated

with those harmonic to the annual period where the numbers

represent the order of the harmonics. The label “F” denotes the

fortnightly tidal period, while the label “M” points to a monthly

period.

4. The same as Fig. 1, except that the predicted time series are

shown.



5. The same as Fig. 2, except that the predicted time series are

shown.

6. RMS errors for the polar motion forecasts using the operational

analysis model (dashed line) and the periodic mode model (solid

line) of excitation function, with 95% confidence levels based on

the chi-squared probability distribution.

7. RMS errors for the polar motion forecasts, up to a lead-time of

one year, using the periodic mode model for the excitation func-

tion (solid line) and three other published forecast methods that

do not involve forecasting of excitation function (broken lines).

Note that the error curves have been computed under different

experimental conditions, so that a quantitative comparison of

the errors is not possible.

8. RMS errors for the polar motion forecasts using the full set of

periodic modes (solid thin line); only the tapering mode (dot-

ted line); using the fortnightly, semi-annual, and annual modes

(dashed line); and using the tapering, semi-annual, and annual

modes (dash-dot line).



Notes

• One of the modes in (9) is a special, non-periodic function used as

a tapering function that makes smooth transition from the most

recent filtered value to the steady state (periodic) behavior. This

is given by setting βjk = 0, so that d(Ṡjk + αjkSjk)/dt = ws
jk.

The tapering function Sjk is then a Langevin process driven by

a random walk (which is in turn driven by the white noise ws
j0).

• The unit “mas” is milliarcsecond, which translates to about 3 cm

of distance on the surface of Earth.

• As a possible improvement to the method described here, the

set of periodicities to model can be chosen more objectively by

application of singular spectrum analysis (Keppenne and Ghil,

1992). Statistically dominant periodicities can be selected based

on eigen-decomposition of an empirical covariance matrix assum-

ing stationarity. This approach is under investigation.
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