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Phase noise and frequency stability considerations

REQUIREMENTS
High-speed: tens of GHz;
Short pulse: picoseconds to sub-ps pulse width;
Low time jitter: <100 fs;
high frequency stability: < 10-11

APPLICATIONS: 
•Radar and sensing
• Time and frequency standard and metrology
• Frequency and time transfer
• Precision optical measurements
• High speed optical communication
• Ultra-fast all optical sampling and analog-to-digital 

conversion

Microwave photonics combines optical generation of high quality 
microwave signals and microwave signal processing with optical means. 

Applications require either LOW PHASE NOISE (TIME JITTER) or HIGH 
FREQUENCY STABILITY or both at the same time.
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Optoelectronic Approach to High Microwave Q 
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Taking advantage of optical fiber low loss transmission

Utilizing regenerative Q in active mode-locked laser

Use filtering effect of narrow two-photon optical transition

A fiber delay line offers high “resonator” Q.
1 km fiber delay is about 5 μs storage time.
Q = 2πfτd
3 km fiber for 10 GHz, Qd ≅ 106

Q= 2πν0Trt/δl
Actively mode-locked laser as two-

terminal microwave device

EDFA

coupler

Optical
bandpass
Filter F(f)

MZ modulator

input beat note as rf
output

ω1, Ω1
ω2, Ω2

Pump Probe

1g

e

2g

Atomic 
population ω

A
bs

or
pt

io
n

D
is

pe
rs

io
n

ω2

EIT filter

D. B. Leeson, in Proc. IEEE, 54, 329 (1966).

N. Yu el al. Optics Letters, Vol. 30 Issue 10 p1231 (2005). 

D.Strekalov,et al. J. Lightwave Technol. 21, 3052 (2003). 
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Optoelectronic Oscillator (OEO)
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Equivalent high Q element
For a fiber length = 10 km,
τ ~ 50 μs delay,
Q=106

 4.4km OEO
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An example of JPL 10 GHz OEO

Fiber length = 4.4 kHz
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Coupled Optoelectronic Oscillator (COEO)

10 GHz short 
optical pulses

10 GHz low 
phase noise 
microwave

200 m loop

2.4x10-3 fs/Hz1/2

1.7 fs between 1 -100 kHz

Anritsu ultra-low noise

Optics Letters, Vol. 30 Issue 10 Page 1231 (May 2005)

The phase noise floor of the COEO is still mostly 
rf-amplifier noise-limited.
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Long-Term frequency Stabilization

Ways to improve the long-term stability

Passive stabilization:  
better packaging and environmental control

Active stabilization to atomic transitions: 
frequency lock to Cs microwave transition or Hydrogen Maser

Use atomic resonator: EIT clock

Optical frequency stabilization

EIT stabilized OEO (D. Strekalov et al, JPL)
Stabilized to Cs beam tube
(M. Yakabe et al. OL. V30, 1514 (2005))
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COEO Frequency Locked to Hydrogen Maser

Hydrogen maser 
@ 10MHz

∫

PZT

Slow drift 
correction

Phase lock is achieved through a voltage 
controlled phase shifter in microwave loop 
with PZT in optical loop for long term shift.

Because of the fast response of VCP, the 
phase correction response can be faster 
than the oscillator loop response time; a 
useful feature for precision phase locked to 
other sources.

Allan variance measurement is measured out side the PLL

Without locking, typically less than 
60 min continuous operation.

With locking, over many hours.
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Conclusion
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1. Various optoelectronic schemes can be used to obtain equivalent high 
microwave Q for producing ultra-low phase microwave signals. In 
particular, COEO with MLL as high Q element simultaneously produces 
ultra-low noise microwave and short optical pulses.

2. Long-term frequency stability of optoelectronic oscillators can be achieved 
by locking to atomic or molecular references. We have shown the 
frequency stabilization by locking to Hydrogen maser and by using 
photonic filter of atomic resonance.
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