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Motivation

Large space-based distribut
optical systems (TPF, DARWIN)

Nanometer-class accuracy
Range of many meters

Modulation Sideband Technology
for Absolute Ranging



Main Technology Issue JdREL

b before MSTAR
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e 10 um ranging
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useless
- The 10 um ranging accuracy of the existing coarse scale gauges is not
sufficient to resolve the ambiguity of the existing fine scale gauges
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Main Technology Issue JdREL
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MSTAR coarse stage

e MSTAR: -integrated sensor, -nm accuracy, -no ambiguity

with MSTAR
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The 0.1 um MSTAR coarse stage ranging accuracy is sufficient o

resolve the ambiquity of the built-in fine scale gauge
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MSTAR architecture JdREL

e EXisting technigues

— 2-color Interferometry (e.g. SIM)

» Using two or more lasers
» Performance limited by laser frequency stability and tuning range

— RF modulation (e.g. GEOSAR)
» Requires high-frequency modulation, detection and processing
« Performance limited by low sensitivity of high frequency detectors and

electronics

« MSTAR is a hybrid
— Implements 2-color interferometry with RF phase
modulation of a single laser
— Heterodyne detection does not require high-frequency
detectors and processing
— Enabled our novel architecture and by availability of high-
frequency phase modulators

\ 4
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Modulation scheme JdREL

Laser

Frequency
shifter

o

« Measurement and Local beams mix
to produce a unique beat frequency

for each sideband

» Electrical Spectrum is filtered to
isolate beats resulting from desired

optical sidebands
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Modulation scheme JdREL
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MSTAR schematic JdREL
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Lab set-up
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Setting the zero

point =0

[ 1 White light reference mirror

MSTAR reference mirror

Target retro
E—— To Spectrometer
—
To white light

source

White Light I—» 0
MSTAR I—> XMSTAR

e Use white light Michelson interferometer to set zero point.
— Match fringe pattern from target retro to MSTAR reference mirror

 Make measurement with MSTAR
 Repeat many times.
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Zero Results JdREL
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Measurement

e Zero set with white light between each point.
e Average error 0.12 pm
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Displacement Test JdREL

) e > —=p MSTAR XMSTAR
|
< .<

AXTRUTH

Fringe counting

AXTRUTH
hasemeter

pI—

o Start with target at zero.
 Measure absolute position with MSTAR

 Move target while tracking with phasemeter to
measure displacement.

 Repeat many times.
 Plot MSTAR vs. phasemeter and calculate residual.
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Displacement Results JdREL
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Miniaturization | =

. Lab breadboard to Space Interferometry
Mission (SIM) type beam launcher

Size ~ 25x15x5 cm

Commercial Nd:YAG laser to
SIM/StarLight developed laser

Brassboard exists

8l Experimental polymer 40GHz modulator
to commercial telecom 40GHz modulator

=
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Frequency Stability JdREL

 Stability requirement given by o, /X
e Coarse (absolute) stage (required o,= 0.1 um)
— Based on the RF modulation frequency

— For 100m separation, fractional uncertainty is 10
— Easily met by commercially available for RF references.

* Fine stage (e.g. 5,=30 nm)
— Based on the laser frequency
— For 100m requires a fractional uncertainty 3x101° (72kHz
with a 1319 nm laser)
— Laser locking systems have been developed which can meet
this requirement
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Moving Targets

ARG

e Use Carrier-Aided Smoothing
— First developed for Global Positioning System

— Allows for coherent averaging in the presence of moving
targets

e Lab setup should track velocities up to 10 mm /s
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Summary JdREL

 Modulation Sideband Technology for Absolute Ranging
e 0.1um accuracy demonstrated over 1 meter.
 Resolves integer-cycle ambiguity: enables nm accuracy

o Standard heterodyne metrology gauge with 40 GHz
phase modulation.

« Verified experimentally over 1 m

o Scaleable to large distance (~100 m) and moving
targets (~10 mm/s)
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L aser Interferometer

ARG
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First Displacement Results JdREL

1.0
E — 0.4 =
x 0.8 (ﬂ
; - 02 Z
p ' A
< 0.6 o
- o,
g — 0.0 =
o 0.4 £
e — -0.2 XQ_
E 0.2 — T
= 1 z z z 04 =
0.0 I [ i i i

0.0 0.2 0.4 0.6 0.8 1.0
"truth" measurement (M), AXrgyrtXsTaRT

 Residual rms =0.12 um

1st demonstration to resolve integer-wavelength
ambiguity with this range in a practical sensor!
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« Distributed Spacecraft Control

— Single MSTAR sensor may be
switched to measure multiple
targets.

— Not affected by momentary
beam interruptions

e Large Single Aperture Telescopes
— In flight surface figure checking

— Scan single sensor to many targets on the
surface

— Multiple sensors to monitor a few key
targets.

* And possibly many more...
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Carrier-Aided Smoothing JdRL

Reference: R. Hatch, The Synergism of GPS Code
and Carrier Measurements, Proceedings of 3rd
International Geodetic Symposium on Satellite
Doppler Positioning, DMA/NGS, pp. 1213-1232,
Washington, D.C. (1982)

Carrier phase Is tracked from the start of the
sideband-phase measurement.

Carrier phase subtracted from the sideband-phase
time series.

Down-converted Doppler shifted frequency, f = 2*v/
A where v = target velocity and A = laser frequency.

Limiting factor is bandwidth of filters around down-
converted sidebands. (e.g. 15kHz of Doppler shift
with A=1319 nm =>v = 1.3 mm/s).
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lodine locking system JdREL

 Modulation transfer spectroscopy (MTS) method for
Doppler free locking.

e Commercially available from Innolight with 10-13
fractional stability

Feedback signal

Filtering & Servo RF Osc

Doubled Output

Detector

Polarizing Beam Splitters
Beam

Dump

IR output
to metrology

MSTAR SPIE Denver 2004 launcher
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