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ABSTRACT 
 
In real-world pattern recognition applications, multiple correlation filters can be synthesized to recognize broad variation 
of object classes, viewing angles, scale changes, and background clutters.   Composite filters are used to reduce the 
number of filters needed for a particular target recognition task.  Conventionally, the correlation peak is thresholded to 
determine if a target is present.  Due to the complexity of the objects and the unpredictability of the environment, false 
positive or false negative identification often occur.   In this paper we present the use of a radial basis function neural 
network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms.  
Image plane features near the correlation peaks are extracted and fed to the neural network for analysis.  The approach is 
capable of handling large number of object variations and filter sets.  Preliminary experimental results are presented and 
the performance is analyzed. 
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1.   INTRODUCTION 
 
Human beings are capable of recognizing objects and understanding images easily.  However, a computer or a robot has 
a hard time to recognizing even a simple object in an unknown environment.  The computer must be taught every 
possible view of the object as well as the environmental changes, in order to avoid confusion.   In 3D space, an object 
has many variations in viewing angles, scale, rotation, sun angle, etc.   It is almost impossible to teach the computer to 
remember all possible variations of a 3D object in 2D image form, not to mention the changing environment.  In the past, 
many invariant algorithms have been proposed to reduce the dimensional complexity of the pattern recognition tasks.  To 
name a few, Fourier transform (shift invariant), Mellon transform (scale invariant), circular harmonic transform (rotation 
invariant), and Hu moments, etc 1 - 6.  Each algorithm reduces certain dimensional complexity, but imposes specific 
restrictions and may add other complexities.   So far, there is not an algorithm that can match human performance. 
 
When a camera takes an image of a scene, the camera orientation can be recorded in the image file and transferred to the 
processor.  The camera information contains the camera angles, magnification, and the time of the day, etc.  The time of 
day information can be translated to the Sun angles.  It determines the shadow length and the direction of the objects in 
the image.  Assume the object is situated in a flat plane, then we can also estimate the shadow length, roll, and the pitch 
angles of the objects.   This information reduces the dimensional requirement of the pattern recognition task.  The 
possible yaw angles of the object can be from 0 to 360 degrees.  Thus, a set of filters are needed to cover these yaw 
angles.    
 
In this paper, a pattern recognition process is presented that uses OT-MACH (optimum trade-off Maximum Average 
Correlation Height) based filters to construct a filter bank of 3D objects.  Variations of the scale, yaw, pitch, and roll of 
the objects are built into the composite filters, which form a filter bank.  A gray scale optical correlator (GOC) is used to 
load the filters from the filter bank rapidly and identifies the objects in a unknown image.   A neural network is trained as 
a post processing step to confirm the identification and eliminate false alarms of the GOC system.   
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2.   SYSTEM ARCHITECTURE 
 
JPL has developed a software tool set that generates the OT-MACH filters, performs the simulation of the optical 
correlation and evaluates the results 7 – 9.   The procedures are as follows (See Figure 1 for illustration):  The camera 
information is extracted and sent to the object model bank.  The object model bank contains the 3D models of the 
objects.  It produces a set of training images of the objects of interest.  The training images contain various object scale 
and orientations that could be seen from the particular camera angle.  The training images are sent to the OT-MACH 
filter generator to generate a set of filters.   The software performs the optimization of filter training parameters.    A set 
of neurons are also trained using the object images and the correlation outputs.  The filters and the neurons are generated 
on-line.  They are fed into the GOC and RBFNN simulators for pattern recognition operations.  The input image is pre-
processed and segmented to 512x512 pixel sizes, and then fed to the GOC simulator.  A series of correlation operations 
are performed on the image by a set of filters.  The correlation outputs are analyzed by the PSR method.  The peaks with 
PSR and peak values above a set threshold will be further evaluated by the neural network post-processor.  The RBFNN 
is used to evaluate the features in each peak location and classify them into two categories: object confirmed, or false 
alarm rejected. 
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Figure 1: Architecture of an optical correlator and neural network pattern recognition system  
 
 
In the following sections, the functions of the system are discussed in detail. 
 

3.   GRAY SCALE OPTICAL CORRELATOR (GOC) SYSTEM 
 
JPL has developed a compact gray scale optical correlator 7.  It is capable of 1000 frames per second parallel correlation 
operations on 512 x 512 pixel images.   Figure 2 shows the compact GOC module.   The size of the GOC is only 2” x 2” 
x 6”.   
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Figure 2: A compact grayscale optical correlator (GOC) module: (a) top view, (b) side view. 
 
 

4.   OT-MACH FILTER GENERATION 
 
4.1   OT-MACH Filter Overview 
 
The OT-MACH (optimum trade-off Maximum Average Correlation Height) is an Fourier transform (FT)-based 
algorithm 10 -13.  It is formulated for the optimal implementation on an optical correlator.  
 
The OT-MACH filter algorithm balances simultaneously several conflicting performance measures such as Average 
Correlation Height (ACH), Average Similarity Measure (ASM), Average Correlation Energy (ACE) and Output Noise 
Variance (ONV), by minimizing the following energy function: 
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The resulting OT- MACH filter (in frequency domain) is given by 10 - 11 
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where α, β and γ are nonnegative parameters. Mx is the average of the training image vectors Xi, i=1, …, N. C and Dx are 
the diagonal power spectral density matrices of additive input noise and of the training images, respectively. Sx is the 
similarity matrix of the training images:  
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By choosing different values of α, β and γ, one can control the OT-MACH filter's behavior to suit different application 
requirements. For example, when α is increased, the resulting filter has relative good noise tolerance but broad peaks. If 



β is high, then the filter generally gives sharp peaks and good clutter suppression but is more sensitive to distortion. By 
increasing γ value, the filter is designed with high tolerance for distortion.    
 
In many ATR applications a target is embedded in a cluttered background. The adjustment of the parameters gives added 
flexibility to optimum filter design.  We have developed a Windows based program to perform optimal search of the α, β 
and γ values. 8, 9   
 

4. 2 Correlation Operations 
 
The input image is cut into 512 x 512 pixels in size.  It is Fourier transformed into the spectral domain.  It is then 
multiplied by the filter and inverse Fourier transformed to the correlation plane.   
 
 C(u,v) = F -1{F {I(x,y)}H(ω,ξ)}, (4) 
 
Where C(u,v) is the correlation plane image, I(x,y) the input image, F  and F -1 stand for the Fourier and the inverse 
Fourier transforms, respectively, and H(ω,ξ) is an OT-MACH filter. 
 
 
4. 3  Filter Bank Generation 
 
Using above OT-MACH filter algorithm one can generate distortion tolerant composite filters. FFT-based filters are shift 
invariant, but they are still sensitive to scale, rotation, perspective, and lighting conditions. In addition, targets may also 
be partially occluded, camouflaged or may be decoys. In order to achieve the highest level of assurance that the targets 
are identified with minimal errors while the number of filters is reasonably small, all desired variations and distortions in 
targets need to be carefully included systematically when generating filters. A filter bank is generated for the targets in 
which every filter covers a small range of variations, and a set of filters covers the full expected range of those 
variations.   
 
We have developed a software tool to streamline the filter synthesis/testing procedure effectively while maintaining filter 
performance.  In order to cover all potential target perspectives with up to 6-degree-of-freedom, a large bank of 
composite filters have to be generated.   The filter training images can be either obtained from real-world examples or 
from a 3D synthesizer.   Figure 3 shows a sub-set of the example training images in changing rotation angles.  The 
corresponding OT-MACH filter is shown in Figure 4. 
 
 

 
 

Figure 3: A set of training images for composite filter synthesis 
 

It may take well over 1000 filters to cover a range of aspect and scale changes of an object.  Filter bank management 
software is needed to keep track of the filters and update the filter bank after new filters are generated. 
 

 



 
 

Figure 4: An example of the OT-MACH filter 
 
 

5. RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN) 
 
JPL has been developing neural network algorithms and their hardware implementation 17, 20 - 22.  A neural network has 
the characteristics of emulating the behavior of a biological nervous system and draws upon the analogies of adaptive 
biological learning.  Because of their adaptive pattern classification paradigm, they possess the significant advantages of 
a complex learning capability plus a very high fault tolerance.  They are not only highly resistant to aberrations in input 
data, but they are also excellent at solving problems too complex for conventional technologies such as rule based and 
determinative algorithm methods.  A unique contribution of neural networks is that they solve many of the obstacles 
experienced with conventional algorithms. 
 
JPL has recently been investigating a real-time trainable digital neural network -- Radial Basis Function neural network 
(RBFNN) paradigm. This RBFNN model can be easily implemented in customized semiconductor hardware using the 
FPGA (Field Programmable Gate Array) technology.  This neural network hardware is a unique digital processor that is 
capable of performing all neural training and classification operations including matrix-matrix multiplications, synapse 
weight computations and thresholding functions dictated by the RBF neural paradigm.17   
 
5.1 Radial Basis Function Model 
 
The post-processing algorithm is based on an adaptive RBFNN architecture. RBFNN algorithms have advantages for 
pattern recognition, including practical implementation in parallel hardware for real-time operation, sparse data 
representation for low power, and fast learning for mapping of the input space 18, 19.  A software simulation of an 
adaptive RBFNN object tracker has been implemented. The RBFNN algorithm consists of mapping an N-dimensional 
feature space by prototypes (training examples). Each prototype is a vector representing a position in the feature space, 
and is represented by a neuron with a receptive field representing a local region of space around the prototype center 
where generalization is possible.  The recognition task then consists of evaluating if a new input feature vector lies 
within the influence field of any neuron stored in the network. Fast learning in the RBF lends itself to real-time 
adaptation to changing target features when objects are viewed from varying angles and the imagery changes scale with 
distance.  
 
The Radial Basis Function (RBF) neural network learns 'by example' from data samples and corresponding categories. A 
block diagram of this system is shown in Figure 5.  Feature extraction methods are designed to tailor a specific class of 
targets. These feature vectors, representing the target of interest, are then fed into the neural network processor.  
 
A gradient feature extractor may be suited for detecting the edges of an object:  
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 Where I(x, y) is  the input pixel value at (x, y).   
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Figure 5: Functional block diagram of a Radial Basis Function neural network (RBFNN).   
 
A neuron distance is calculated from each neuron to the input feature: 
 
 D(N) = |Wn(x, y) – F(x, y)|, (6) 
 
Where Wn (x, y) is the Nth neuron weight vector.   
 
If the input feature vector falls within the influence field of a neuron, then it is classified as belonging to this neuron 
class.  The influence field of a neuron is a multi-dimensional hyper-spherical area centered from the neuron.  The radial 
distance between the center and the edge of the influence field is defined by the shortest distance between the neuron and 
the counter examples of a different class or clutters, as shown in Figure 6.     
 
Each neuron adjusts its influence fields when presented with examples of objects and clutters so that it occupies as large 
an area as possible, but not to collide with counter examples.  The influence field is defined as  
  
 Inf(N) = min(Dce(N)), (7) 
 
Where Dce (N) is the distance between counter-examples and the Nth neuron. 
 
By presenting proper objects and counter examples, the influence fields of the neurons are fine tuned to define a proper 
non-linear boundary.  Background clutters can be used as the counter examples.  Shifting the window around the object 
area, then extracting the features from the windows also serves as good counter examples.20  Eventually, the influence 
fields of the neurons occupy all feature space belong to the objects, setting the non-linear boundary between the objects 
and the counter examples and clutters, as shown in Figure 7.   
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Figure 6: Influence field of a neuron and counter examples. 

 

 
 
Figure 7: An example of RBFNN in a simplified 2-D feature space.  By presenting proper objects and counter examples, the RBFNN 

forms a non-linear boundary between the features of the objects and the clutters. 
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6.   SIMULATION RESULTS 
 
A set of training object images were extracted from the 3D models.   The sampling interval is 5 degrees angular and 7% 
scale.  For a given input image, based on its camera information, a set of 24 filters are generated to cover 15 degree roll 
and pitch angle variation and 360 degree yaw angle.   The objects are embedded in arbitrary background images.  The 
intensity of the image areas varies dramatically to simulate the climate variation and urban changes.   Figure 8(a) shows 
an image with an embedded object.    Figure 8(b) shows the correlation plane.  The peaks are located in the object 
coordinates, indicating the detection of the objects.  However, some clutters also cause false peaks in the correlation 
plane.   A peak to side lobe ratio (PSR) method can increase the reliability of the correlation detection.   However, due to 
the complexity of the background clutters, further post processing is needed to eliminate the clutters. 
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Figure 8:  (a) An input image with objects embedded, and (b) the correlation plane show the detection of the object and the false alarm 

of the clutters. 
 
 
A RBFNN is used to train with the object features.   Figure 9 shows an example of the gradient features extracted from 
the targets and non-targets.   The gradient features capture the edge information of a generally rectangular shaped object.  
The relative locations, magnitudes and the signs of the edges are shown as the peaks of the feature vectors.   The clutters 
show random patterns in the gradient feature vectors.  The object features are used to train the neu
fe
e
b  the RBFNN.  From initial experiment results, we can see e RBFNN is capable of reducing false alarms significan
fr
o
 



 
 
 

Figure 9:  Examples of the target and non-target gradient features for the RBFNN. 
 
 

7.   CONCLUSIONS 
 
Initial results of combining the software simulation tools of the OT-MACH filter generation and the RBFNN training 
confirm a reduction of the false alarm rate for automatic target recognition.  The procedure of generating a filter bank to 
cover angular and scale variations of the object in 3D views has been discussed.  An improvement of the specificity of 
optical correlation was shown through advanced training of the image features using new tools, and object gradient 
features were reported.  Additional research is underway to optimize the neural network training of the object features 
further improving the reliability of the pattern recognition processes. 
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