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Abstract: We consider mixture density estimation under the symmetry con- 
straint x = A z  for an orthogonal matrix A .  This distributional constraint 
implies a corresponding constraint on the mixture parameters. Focusing on 
the gaussian case, we derive an expectation-maximization (EM) algorithm to 
enforce the constraint and show results for modeling of image feature vectors. 

V 

1 Introduction 
We consider a simple constraint which captures underlying symmetry in den- 
sity estimation problems. In particular, we are interested in cases where the 
target random variable z E Rd satisfies 

V x = Ax 

for a known linear transform A .  It is immediate that A is nonsingular: 
otherwise Ax would concentrate in a proper subspace of Rd,  and the law 
of .E would fail to have a density with respect to Lebesgue measure on Rd. 
Indeed, IAl = 1 (writing IAl for absolute value of the determinant) since 

There are no general restrictions on A through its singular values. For exam- 
ple, consider for any orthonormal U the symmetry A = U [ 172 :] UT. Choos- 

ing z - N ( 0 ,  C) where C = U [ 1 y 2 ]  UT implies ACAT = C so that z = A z .  

Iterating ( l ) ,  noting [AI # 0, shows z = APx for any integer p .  For clarity 
we confine this paper to cyclic symmetries: A P  = I for some period P. The 
set of symmetries G = { I ,  A , .  . . , A p - ’ }  is then isomorphic to the cyclic group 
of order P. This can be relaxed in various ways. Some multiple symmetries 
are encoded by finite groups that are not cyclic. Also, continuous (e.g., scale) 
or aperiodic (e.g., translation) invariances are important in applications. 

Mixture est,imation problems for image data having symmetries motivated 
this work; see the figure on the last page. The upper left plot shows bivariate 
feature vectors taken from pairs of synchronized solar images from the NDI 
imager on the SoHO spacecraft. These densities have symmetry with respect 
to changing the sign of the magnetic flux, corresponding to A = [ ;’ y ] .  
Similar data are gathered by other solar observatories. Taking A as a general 
rotation matrix can encode a variety of similar geometric constraints. Taking 
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Figure 1: Schematic rendering of three cycles in a system with P = 6. All P 
versions of the component are shown; the P/Q aliases have the same markers. 

A as a permutation enforces within-feature-vector distributional constraints. 
For complex x. A = G I  gives real-imaginary symmetry. 

As density models for x we use finite normal mixtures [6]: 

K-1 whcre CkZO y1 = 1,  the constituent mean vectors pk are arbitrary, and the 
covariance mattrices E k  are symmetric positive-dcfinite. We require that the 
(pk, E,) be distinct to preserve identifiability. The free parameters 

@ = {(Yk, Pkr Ek)>fG1 (3) 

are chosen using training data X = { x ~ } : = ~  and maximum likelihood: 

OML = arg max log p ( X ;  0) . (4) 9 E Q  

To estimate these parameters, we use the well-known EM (Expectation- 
Maximization) algorithm, which leaves room to accommodate key physical 
constraints like (1). Constraints also ameliorate the problem of local maxima 
~~ which is especially troublesome in mixture estimation. 

The sequel is organized as follows. In the next section we lay out the 
structure of the parameter constraints implied by the symmetry constraint 
in the context of normal mixtures, briefly examining related work. We then 
derive the EM algorithm for the general solution. Implementation issues and 
some representative results follow this derivation. 

2 Constrained Mixture Parameters 
Suppose 5 is governed by a normal mixture 0 = { ( ~ k , p k , E k ) } f = & ' .  Then 
the constraint (1) is satisfied if and only if 

(7, P,  E) E 8 * (7, AP, AXAT) E 8 ' ( 5 )  
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Henceforth, for short: when 0 = (7, p> E) E 0, write AB for (yI Apl AXAT). 

tation 7r of (0 , .  . . , K - 1) mapping mixture components according to A: 
To see ( 5 )  suffices for (l), first note that (5) implies existence of a permu- 

x ( k )  = arg min (1 - k )  mod K 
/:Oi=ABr 

To see that 7r is a permutation, note that the set of 1 satisfying the condi- 
tion is guaranteed to be nonempty by (5) so x is a well-defined function on 
(0, .  . . , K - l} And, the inverse exists: 

which has the effect of counting down from 1, looking for the first matching 
parameter tuple, while R counts up. Now x and IAl = 1 establish (1): 

The reverse implication, which is not so important for our purposesl follows 
from the linear independence of Gaussian functions [8]. 

The domain of A can be partitioned into cycles, each of the form C = 
(k l ,  . . . , k ~ )  for some length Q. Cycles are the minimal subsets of the domain 
which are fixed by the permutation: ~ ( k i )  = k,+l and x ( k ~ )  = k l .  Listing 
the cycles of T uniquely determines and succinctly describes its structure. 
This decomposition will prove key to compactly specifying the form of the 
mixture to be tit to  XI e.g. section 4. 

The cycles correspond to structural properties of the mixture. They par- 
tition the components, so write [ k ]  for the equivalence class of bump k under 
A. For instance, a component @k might itself satisfy = Ok, and x ( k )  = k :  
a cycle of length Q = 1. At the other end, a chain of Q = P intermediate 
components, each having no symmetry properties, lead back to Bk.  Such a 
group is shown at left in figure 1, which takes P = Q = 6 and schematically 
represents app'lication of A to some f& as rotation by GO", and distinct com- 
ponents 0 ~ :  1 E [ k ]  as different markers. (The figure shows them in sequence, 
although that is not true in general.) Cycles of length Q > P cannot occur: 
otherwise, both 0 and 0' = APB would exist as distinct members of 8. Since 
AP = I ,  this would violate identifiability. 

More generally, cycles of 1 5 Q 5 P components occur if and only if 
Q I P (i.e., Q divides P) .  The middle panel of the figure shows the Q = 3 
case where C -= (12,13,14); there are only three distinct markers because 
812 = A3&2. .At right, Q = 2 and C = (15,16). These diagrams illustrate 
why Q must divide P. Formally, this is just Lagrange's theorem applied 
to the cyclic group of order P: all its subgroups are cyclic and of an order 
dividing P. 
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Cycle Mixture Q P' Internal 
Indexes Constraint - 

1 0-5 6 1 none: A6 = I  
2 6-11 6 1 none: A6 = I  

4 15-16 2 3 615 = A2&5 
5 17-18 2 3 017 = A2&7 
6 19 1 6 619 = A619 

3 12-14 3 2 e12 =A3el2 

Within this restriction, many component structures may coexist in 8; we 
establish conventions for their ordering. A K-bump mixture corresponds to 
a tuple K,, with entries summing to K ,  each giving the number of' mixture 
components devoted to cycles of each possible length Q such that Q I P. For 
instance, if P == 6: a symmetry of K ,  = (12,3,4,1)  implies K = 20 and 

7r = ( ( 0 , l  2 ,3 ,4 ,5)(6,7,8,9,10,11)(12,13,14)(15,16)(17,18)(19)) .  

The table above itemizes the parameters, and figure 1 shows parameters 
corresponding to the first, third, and fourth cycles of 7r. 

Suppose a given cycle contains Q components. In the conventional order- 
ing. the components have a shared parameter constraant 

Ok+l E A&, . . . , 6 k + ~ - 1  E AQ-lOk . ( 8 4  

(Vl E [IC]) 61 = A'€', . (8b) 

nuthermore, each component also satisfies an znternal construznt 

We will use Lagrange multipliers to enforce (8b). The Lagrangian term for 
p == A p  is 1 ,  = XT(p - A p )  for a vector X to be determined. Enforcing 
C =: ACAT calls for a matrix A,  one for each entry of D = C - ACAT: 

IC = A,,D,, = tr D T A  = tr(C - ACAT)A = tr C(A - AAAT) (9) w 

where we have used C = CT and the trace identity, t r A B  = t r B A .  The 
constraint on C is equivalent to the same constraint on E-', so we w e  instead 
the more convenient I C - I  = trC-'(A - AAAT).  

Earlier work on constrained mixtures imposes structure to compactly pa- 
rameterize the covariance. Some structured covariances (e.g., Ck = uiZ) 
can be trivially handled in the EM algorithm. This idea ha? been extended 
using the eigendecomposition = XkHkDkH; where the Hk are orthogo- 
nal XkDk is the diagonal eigenvalue matrix, and = 1; a family of EM 
algorithms results [2, 31 from various parameter-sharing schemes. A "semi- 
tied'' covariance model has been used in output modeling for hidden Markov 
models (HMMs) [4]. This parameterizes a subset IC c (0,. . . , K - l} of co- 
variances by sharing H .  Other subsets IC' could have different structuring 
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matrices H .  Mixtures of factor analyzers [5] are another twist: covariance 
models of the form = HkHl t Dk, with low-rank Hk and diagonal Dk. 
The constraints we consider give rather different structure to the covariance, 
and affect the means and weights as well. The structure imposed on the 
Gaussian distribution (i.e., K = 1) by symmetry expressed as an algebraic 
group has been deeply elucidated [I, App. A]. For concreteness, we have 
specialized in this paper to the cyclic group, while treating the more general 
class of K-component mixtures with a more computational viewpoint. 

3 Normal Mixture Solution 
Following the standard approach to fitting a mixture distribution via EM 
(e.g., 16, sec. 3.2]), define for each 5,  a corresponding sequence of indicator 
variables 2, = ( z , ,~ ,  . . . , z n , ~ - l ) .  Exactly one of these indicators equals one, 
signaling which component of (2) generated 5,. We correspondingly denote 
Z = {Zn}~=l ,  and the pair ( X , Z )  becomes the complete-data of the EM 
algorithm. The log probability of the complete-data decouples as 

K-1 N 

logP(x, 2) = %.klog[?YkN(zn; Pk> &)I  
k=O n=l 

and its expectation given the observation is 

K-1 N 

Q ( @ )  = E[logP(X, z) I XI = c T n , k  log[?’kN(zn; Pk, E,)] (10) 
k=O n=l 

where the weights are regarded as known: 

The quantity r,,k/N is a joint pmf. It is convenient to also define r k  = 
r,.k and r,(k = Tn,k/Tk. The latter is a correctly normalized condi- 

tjional distribution. We maximize Q(0) at every EM iteration to update the 
parameters. M’e use the parameter ordering convention described above. 

The update for the weights can be derived separately because the terms 
of Q involving Yk separate out. Including the Lagrangian term for the unit 
mass constraint on the weights, the function to he maximized is 

N 

To find Yk, recall from (sa) that all of the weights 71, 1 E [I;], are in fact the 
same parameter. Differentiating reveals the optimal weight is 
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where #[k] is the cardinality of the cycle. This is just the average class- 
membership in the cycle containing k, normalized to sum to unity. 

Using the trace identity, the terms of (10) involving means and Covariances 
are conventionally written via the weighted sufficient statistics: 

Q(P0 , .  . . > p k : - l r  EO,. . . 7 X K - 1 )  = 

1 K - l  T -1 
- - 1 Tk [log l c k l  + ( m k  - P k )  ( m k  - pk) + t ' X i l S k ( m k ) ]  (13) 

k=O 
2 

N N 

n=l  n = l  

The k subscript indicates weighting by the conditional probabilities rnlk. 
It is immediate from the sum in (13) that_, in the usual unconstrained 

mixture problem, parameter updates for (&, E , )  decouple across k .  In the 
constrained case, differentiating with respect to p k  or ck will involve all 
components in [k], but no others: components within a cycle are tied via (sa). 
In the remainder of this section, we suppose the cycle is indexed as [k] = 
( 0 , .  . . , Q - l} to rut down on superfluous notation. 

To enforce the shared parameter constraint (8a), let po be a free parameter 
and write pl = Alp", 0 < 1 < Q, and similarly for the covariances. Use the 
Lagrangian mechanism to account for the internal constraint (8b), namely 

pi = A Q ~ ~ ,  c1 = A Q c , A ~ Q ,  o I i < Q, (15) 
which is of course accomplished by constraining (pol E") only. With this way 
of writing the parameters, the cycle-k terms of (13) are 

Q - 1  

Q(p0, Eo) = -m ?k [log lcol + ( A T k m k  - p o ) T C g l ( A T k m k  - Po)+ 
k=O 

2 

t r  c g l A T k s k ( m k ) A k ]  (16) 

where T [ ~ ]  := 1:::; Tk and 7 k  = r k / r p ] ,  a pmf on 10,. . . , Q - 11. 

about po. It aids understanding to write (16) with new sufficient statistics 
Collapsing Q parameters to one makes, e.g.. m o l .  . . , mQP1 informative 

k=O k=O 

Intuitively, the cycle's statistics are transformed back to the (PO, EO) coor- 
dinates and averaged there. Formally, fi arises by completing the square in 
the quadratic form involving po in (16). With this definition, and including 
Lagrangian terms, the objective function simplifies to 
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Differentiating with respect to gives the necessary condition 

j i o  = f i  + &(I - AQ)TX 

To satisfy the constraint, note that the average of P’ = P / Q  transformed 
means bo, A ~ Q ~ ~ ,  . . . , ~ ~ ( ~ ’ - l ) Q f i o  telescopes to: 

Substituting j&, into the Lagrangian (18) and differentiating with respect to  
the elements of E;’ reveals a necessary condition 

50 - S - (6 - fio)(m - + (A - A Q A A ~ Q )  = o 
Enforcing the constraint with the averaging method reveals 

compare [l, Thm. A.21 for the K = Q = 1 case. To sum up, the parameters 
are updated with a nested average of transformed sufficient statistics. The 
inner averages (17) are across Q terms, one for each linked component in the 
cycle. The outer averages, in (19) and (20), sum over the symmetries in the 
order-P’ cyclic subgroup of G to enforce invariance with respect to AQ.  

4 Implementation and Results 
The new information needed is A and the symmetry vector K ,  giving K :  how 
many bumps to allocate to each symmetric configuration. (Unconstrained 
EM has K ,  = K ,  A = I . )  Standard EM finds (mk,Ck)&’ as in (14). The 
new procedure follows these E and M steps with a constraint step which 
loops over each cycle of K ,  performing a P = QP’-fold averaging as in (17), 
(19), and (20). This t,akes O(Kd’) operations, dwarfed by the O(NKd’) 
in each ordinary EM step. If all cycles have Q = P ,  the constrained algo- 
rithm is equivalent to copying each z E X ,  P times (5,  A z ,  ..., A P - ’ z )  plus 
unconstrained EM, but requires P times less computation. 

On the next page we compare unconstraincd versus constrained methods 
with K = 6 on N = 15032 feature vectors from MDI images (top left). Each 
run selects the highest-likelihood model after ten, 1000-update EM sequences. 
The unconstrained models are unstable from run to run; the bottom panels 
show concentration ellipses and centers of two typical best-of-ten models. 
The constrained model (top right,) uses K, = (2 ,4) .  It does not have run- 
to-run instability, and its decomposition provides interpretable information: 
the symmetric pair is due to the chromospheric network, a small brightening 
distributed across the solar disk. One-bump cycles (i.e., Q = 1) are needed: 
models with Ks = (K,O) do not coalesce paired bumps and converge very 
slowly to inferior models. Three similar mixtures with K, of (4,4), (12: 2), 
and (4,2) are used operationally to identify three types of solar activity [7]. 
The constraint proved essential to estimate these more complex models. 
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