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Background
Temperature Oscillation in TES LHP EDU (25W/263K)

Temperature (K)

- Large amplitude temperature oscillations were observed in JPL LHP tests

in 2000.
» Constant power, constant sink

» No satisfactory explanation.
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Three Types of LHP Temperature Oscillations

« Ultra High Frequency Temperature Oscillations
— Periods less than 1 second
— Related to two-phase flow characteristics.
— No published experimental data
~ Not important in spacecraft thermal control
— Pressure oscillations are more of a concern

+ High Frequency, Low Amplitude Temperature Oscillations
— Periods on the order of seconds to minutes
— Amplitudes on the order of one Kelvin
— Caused by vapor front movement near condenser inlet or exit

* Low Frequency, High Amplitude Temperature Oscillations
— Periods on the order of hours
— Amplitudes on the order of tens of Kelvin
— Several possible causes
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Low Frequency High Amplitude
LHP Temperature Oscillations

* Constant Applied Power/Oscillating Sink Temperature

— Observed in flight or simulated thermal vacuum tests.
— Results are expected.

* LHPs with a Single Evaporator and Two Parallel Condensers
— One sink is colder than saturation temperature, the other is warmer.
— The flow regulator with warm sink dries out periodically.
— Oscillations can be eliminated by placing the two flow regulators side
by side.
* LHPs with Large Thermal Masses

~ Constant applied power/constant sink temperature
— Topic of this presentation
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Objectives

Investigate low frequency, high amplitude temperature oscillations.
— LHP with a single evaporator and a single condenser

- A large thermal mass attached to the evaporator
~ Constant applied power and constant sink temperature

Propose a new theory for low frequency, high amplitude temperature
oscillations.

— Physical processes

— Interactions among LHP components

— Source of temperature oscillation

— Factors affecting the amplitude and period of temperature oscillation

Verify the theory with test results from TES LHP EDU testing.
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Synopsis of the Proposed New Theory

With a constant sink, an oscillating heat input to the evaporator will lead
to a temperature oscillation.

Under certain conditions, the large thermal mass attached to the
evaporator can modulate a constant applied heat load into an oscillating
heat input to the evaporator, causing the loop temperature to oscillate.

— The thermal mass absorbs energy when the CC temperature is rising,
and releases energy when the CC temperature is falling.

— The net evaporator power oscillates between a maximum that is
higher than the applied power, and a minimum that is lower than the
applied power.

In order to sustain a low frequency, high amplitude temperature
oscillation, all of the following three conditions must prevail:

— A large thermal mass is attached to the evaporator.

— A small power is applied to the thermal mass.

— The sink temperature is colder than the ambient temperature.

Once it has started, the temperature oscillation can continue indefinitely
until the operating condition changes.

LHP Temp Osci
JTK - 9/15/03



Schematic of an LHP without Thermal Mass
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Schematic of an LHP with Thermal Mass
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Schematic of ah LHP with Thermal Mass
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CC Temperature Decreasing
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CC Temperature Increasing
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CC and Thermal Mass Temperatures

(Theoretical)
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Review of Necessary Conditions

* The three necessary conditions to
sustain a high amplitude temperature
oscillation:

* A large thermal mass is attached to the

evaporator. ,
« A small power is applied to the thermal

mass.
» The sink temperature is colder than the

ambient temperature.
+ If any of the conditions is not met, the
thermal mass temperature will never
decrease. Q, will gradually increase until
Q, = Q,,, at the steady state.

* The LHP will operate steadily in region .
« IfQ,,, > Q,, the transient will be short
and LHP will operate steadily in Region II.

CC Temperature

Region Iﬁ""’ Region I1
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Two Important Corollaries

Region Iﬁ"" Region II

-
o

* A high amplitude temperature
oscillation is possible only in Region I, it
can never occur in Region Il.

-~

CC Temperature

* Part of the mechanism that drives
the temperature oscillation is that T
the net evaporator power decreases

Qz Qs Q4 Q5

and the CC temperature increases
simultaneously after Q, reaches a Net Evaporator Power, Q,
maximum and T__reaches a
minimum. dT
thCp,tm - = Qapp o Qe
i dt
* Q, .ax Can never exceed Q, during a
high amplitude temperature oscillation. Q,=G,. (T, -T.)

T,
Qe = Qapp -thcp,tm d;

Lvap = Qe,vap/[hﬂ])(r[;c - Tsink)]
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Schematic of TES LHP EDU
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Temperature Oscillation in TES LHP EDU
(25W/263K)
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Vapor Front Movement and Temperature Oscillation
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Vapor Front Location and Temperature Oscillation

Region M~ p.oion I

Condenser Sink
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« With a very small applied power and/or a very cold sink, vapor may
condense in the vapor line at the peak of the CC temperature (Q, =Q, .i)-

* The vapor line works as a condenser.

» The liquid in the vapor line provides an “initial push” for a rapid CC temperature
drop when T_, begins to decrease.

- The smaller the applied power and/or the colder the sink, the higher the
peak CC temperature.

+ If the vapor front stays inside the condenser, the range of L will be small,
leading to a small temperature oscillation.
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Temperature Oscillation in TES LHP EDU

(20W/263K)
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- Temperature Oscillation in TES LHP EDU

(50W/268K)
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Effect of Sink Temperature on CC Temperature
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Temperature Oscillation in TES LHP EDU
(50W, 273K/ 263K/ 253K/ 243K)
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Temperature Oscillation in TES LHP EDU

(75W, 243K/ 253K)
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Temperature Oscillation in TES LHP EDU

(15W/253K, 20W/293K, 20W/253K)
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Temperature Oscillation in TES LHP EDU
(263K, 15W/ 20W/ 30W)
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Amplitude of Temperature Oscillation

vs Applied Power and Sink Temperature
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Period of Temperature Oscillation
vs Applied Power and Sink Temperature
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Summary

Under certain conditions, the thermal mass can modulate the constant
applied power into an oscillating heat input to the evaporator.

— The oscillating evaporator power has a maximum that is greater than
the applied power and a minimum that is smaller than the applied
power.

— Ultimate source of the temperature oscillation

In order to sustain a low frequency, high amplitude temperature
oscillation, all of the following three conditions must prevail:

— A large thermal mass is attached to the evaporator.
— A small power is applied to the thermal mass.
— The sink temperature is colder than the ambient temperature.

The combination of the above three parameters governs the temperature
oscillation.
— In general, the amplitude and period of the temperature oscillation
increase with an increasing thermal mass, a decreasing applied
power, and a decreasing sink temperature.

Once it has started, the temperature can continue indefinitely until the
operating condition changes.

The proposed theory agrees well with experimental data.
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Conclusions

* In space applications, the evaporator is attached to large thermal masses
and the radiator may be exposed to a cold environment over a long period
of time, thus a high amplitude temperature oscillation can occur.

« Several methods can be used to reduce or eliminate high amplitude
temperature oscillations.

— Actively control the CC temperature.

— Reduce the heat leak from the evaporator to CC.

— Reduce heat leak from ambient to the liquid line.

— Heat the vapor line to prevent vapor condensation in the vapor line.

— Increase the thermal conductance between the evaporator and thermal
mass

+ Recommended future studies
— Verify the oscillating evaporator power by placing a sufficient number
of temperature sensors in the thermal mass.
— Investigate the effect of thermal diffusivity of the thermal mass.
— Develop an analytical model to predict conditions under which high
amplitude temperature oscillation will occur.

— Develop an analytical model to predict the amplitude and frequency of
the temperature oscillation.
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