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Why Mid-IR Lasers?
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€ Molecules possess strong fundamental
vibration-rotation lines in the mid-IR

€ Mid-IR improves sensitivity by orders of
magnitude over near-IR spectroscopy

@ There is less spectral interference in the
mid-IR

Planetary science payoff is very high—

€ Atmospheric chemistry

€ Hydrocarbon signatures at 3—4 pm &
biogenic gases throughout the mid-IR
important for life detection

@ Possible precursors to molecules of
biological relevance important for
prebiotic chemistry (e.g. ethane, C,H,,
HCN, HC;N)

@ Isotopic ratios can be obtained

For JPL and NASA, the interest is mainly in planetary and Earth science.



What is Interband Cascade (IC) Laser? Jpl_

[original concept, R. Q. Yang, Superlattices and Microstructures, 17, 77 (1995)]

(Type-11 QWs)
carrier injection \\/
hv
\\\»

| Type-11 QW
interband § f (Type-11 QWs)
7N

tunneling hv
. . "> linterband \\ /
active region —<
tunneling N\,b»V
i i ' ier extraction
active region ~ carrier ex

active region
€ cascade process —

» high efficiency, high output power
» uniform injection of carriers over every stage
» lower carrier concentration required for threshold, thus lower loss

€ interband transition —

» circumvents fast phonon scattering, but faces non-radiative Auger recombination
& type-11 quantum wells (QWs) —

» facilitates interband tunneling for cascade process

» excellent carrier confinement because of band-gap blocking



Material system, MBE growth, fabrication
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@ Sb-based 111-V QW structures —
» lattice constant near 6.1 A grown on GaSb

» quality of GaSb substrate is not yet as good as
GaAs and InP
€ interband transition in type-11 QWs —
» allows for wide wavelength tailoring range
» alleviates problem of Auger recombination
with reduced wave-function overlap between
transition states

» possibility of suppressing Auger losses
through quantum engineering, challenging
with inaccuracies of material parameters

» can have benefits from strain effect in QWs

€ MBE growth —
» Very complicated structure with more than
2000 layers and >15 hour growth time

» Some uncertainty and roughness in interfaces

» Requiring precise control of layer thickness
and composition; changes of 1 A can shift
the lasing wavelength out of a molecular

resonance
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@ Device fabrication —
» typically processed into relatively broad-
area laser without facet coating

» epilayer-side-up mounting onto a Cu sheet



Current JPL Laser Status in terms of Max. T
(compared to open literature as of 2/2004)

JPL

Maximum temperature (K)

0.4

Photon energy (eV)
0.3

400 L _

III-V Sb based m|d IR dlode Iasers
reported in literature and

J - JPL laser

0d

] ¢ e ICL pulsed, cw 4
1 o = type-ll pulsed, cw
1 v v type-l pulsed, cw

0 ,v@@ ..........................................................................................

3.0

3.5 4.0 4.5 5.0
Wavelength (um)




N‘ASA Typical distributed feedback (DFB) IC laser structure _JISL

* Thin top-cladding InAs/AlSb SL

» Facilitate the integration of DFB gratings
<— metal into the laser without the need of deep
etching

» Use SiO, layers for insulation and edge
metal contacts to minimize the loss

» In-plane conductivity is much higher
than the vertical one, leading to excellent
lateral current injection

n* contact layer

<«—Si0,

SEM image of a DFB laser. The grating
was formed with e-beam writing and RIE
etching into the top cladding layer
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Single-mode DFB lasers were observed at
temperatures up to 175 K in cw mode
wavelength can be tuned with current at a rate
of ~0.05 nm/mA
output power >1 mW, enough for gas sensing
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DFB mode is determined by grating period A

temperature tuning coefficient ~0.2 nm/K
both DFB and FB modes exist at certain
temperatures and currents

two degenerate DFB modes

Yang, et al. Appl. Phys. Lett. 84, 3699 (2004)



Distributed feedback IC Lasers near 3.5 pm JRPL
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» Single-mode DFB lasers were observed near « DFB mode is determined by grating period A
3.5 um » temperature tuning coefficient ~0.2 nm/K

» wavelength can be tuned with current at a rate » both DFB and FB modes exist at certain
of ~0.03 nm/mA temperatures and currents

e output power >1 mW, enough for gas sensing



Transmission Signal (arb.

Trangmission signal (aro.)
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Detection of CH4 using DFB IC lasers
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Summary =

> Single-mode DFB IC lasers have been made near 3.3 and 3.5 um

> Continuous wave operation has been demonstrated at temperatures
upto 175 K

> DFB IC lasers have been applied for the detection of trace gases
such as CH4
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