Mid-IR distributed feedback interband cascade lasers and their application for detection of CH$_4$

Rui Q. Yang, C. J. Hill, B. H. Yang, C. M. Wong, R. E. Muller, P. M. Echternach, L. E. Christensen, and C. R. Webster

Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA

May 17, 2004 at CLEO, San Francisco, CA
Why Mid-IR Lasers?

- Molecules possess strong fundamental vibration-rotation lines in the mid-IR
- Mid-IR improves sensitivity by orders of magnitude over near-IR spectroscopy
- There is less spectral interference in the mid-IR

Planetary science payoff is very high—
- Atmospheric chemistry
- Hydrocarbon signatures at 3–4 µm & biogenic gases throughout the mid-IR important for life detection
- Possible precursors to molecules of biological relevance important for prebiotic chemistry (e.g. ethane, C_2H_4, HCN, HC$_3$N)
- Isotopic ratios can be obtained

For JPL and NASA, the interest is mainly in planetary and Earth science.
What is Interband Cascade (IC) Laser?

cascade process —
» high efficiency, high output power
» uniform injection of carriers over every stage
» lower carrier concentration required for threshold, thus lower loss

interband transition —
» circumvents fast phonon scattering, but faces non-radiative Auger recombination

type-II quantum wells (QWs) —
» facilitates interband tunneling for cascade process
» excellent carrier confinement because of band-gap blocking
◆ Sb-based III-V QW structures —
 » lattice constant near 6.1 Å grown on GaSb
 » quality of GaSb substrate is not yet as good as GaAs and InP
◆ interband transition in type-II QWs —
 » allows for wide wavelength tailoring range
 » alleviates problem of Auger recombination with reduced wave-function overlap between transition states
 » possibility of suppressing Auger losses through quantum engineering, challenging with inaccuracies of material parameters
 » can have benefits from strain effect in QWs
◆ MBE growth —
 » Very complicated structure with more than 2000 layers and >15 hour growth time
 » Some uncertainty and roughness in interfaces
 » Requiring precise control of layer thickness and composition; changes of ±1 Å can shift the lasing wavelength out of a molecular resonance
◆ Device fabrication —
 » typically processed into relatively broad-area laser without facet coating
 » epilayer-side-up mounting onto a Cu sheet
Current JPL Laser Status in terms of Max. T
(compared to open literature as of 2/2004)

$III-V$ Sb-based mid-IR diode lasers reported in literature and J - JPL laser
Typical distributed feedback (DFB) IC laser structure

- Thin top-cladding InAs/AlSb SL
 - Facilitate the integration of DFB gratings into the laser without the need of deep etching
 - Use SiO$_2$ layers for insulation and edge metal contacts to minimize the loss
 - In-plane conductivity is much higher than the vertical one, leading to excellent lateral current injection

SEM image of a DFB laser. The grating was formed with e-beam writing and RIE etching into the top cladding layer.
Distributed feedback (DFB) IC Lasers near 3.3 µm

- Single-mode DFB lasers were observed at temperatures up to 175 K in cw mode
- wavelength can be tuned with current at a rate of ~0.05 nm/mA
- output power >1 mW, enough for gas sensing

- DFB mode is determined by grating period Λ
- temperature tuning coefficient ~0.2 nm/K
- both DFB and FB modes exist at certain temperatures and currents
- two degenerate DFB modes

Distributed feedback IC Lasers near 3.5 µm

- Single-mode DFB lasers were observed near 3.5 µm
- Wavelength can be tuned with current at a rate of ~0.03 nm/mA
- Output power >1 mW, enough for gas sensing

- DFB mode is determined by grating period Λ
- Temperature tuning coefficient ~0.2 nm/K
- Both DFB and FB modes exist at certain temperatures and currents
Detection of CH4 using DFB IC lasers

Scan 6 5/5/2004
Device A, ca. 140K, 53 mA
2 mbar methane, 4 cm cell, 295K

Scan 13 5/8/2004
Device B, ca. 150K, 70.3 mA
2 mbar methane, 4 cm cell, 295K

Threshold
50 mA

62.8 mA

Threshold
65.4 mA

76.7 mA
Summary

- Single-mode DFB IC lasers have been made near 3.3 and 3.5 µm
- Continuous wave operation has been demonstrated at temperatures up to 175 K
- DFB IC lasers have been applied for the detection of trace gases such as CH4

The work was supported in part by:

- NASA Advanced Environmental Monitoring and Control Program
- NASA Enabling Concepts and Technologies Program
- JPL Internal Research and Technology Development Program