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Abstract

A family of upper bounds to error probabilities of coded systems was recently proposed by Di-
vsalar [5]. These bounds are valid for transmission over the additive white Gaussian noise channel,
and require only the knowledge of the weight spectrum of the code words. After illustrating these
bounds, we extend them to fading channels. Contrary to the union bound, our bounds maintain their
effectiveness below the signal-to-noise ratio at which the cutoff rate of the channel equals the rate of
the code. Some applications are shown: first, we derive upper bounds to the minimum signal-to-noise
ratio necessary to achieve zero error probability as the code block length increases to infinity. Next,
we use our bounds to predict the performance of turbo codes and low-density parity-check codes.

1 Introduction and motivation of the work

During the years, much effort has been spent in the search for close approximations to the er-
ror probability of systems in which coding is used in conjunction with maximum-likelihood
decoding (here we are especially interested in linear binary codes, so we shall restrict our at-
tention to these without any further stipulation). In many instances the union bound provides
a useful tool for the prediction of system performance at intermediate-to-high signal-to-noise
ratios (SNR). It is easy to compute, and requires only the knowledge of the weight spectrum
of the code; however, it becomes looser and looser as the SNR decreases, to the point of being
totally useless when the SNR approaches the value at which the cutoff rate Ry of the channel

equals the code rate R..
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The recent discovery of an easily decodable family of codes with good error properties
even beyond the channel cutoff rate, and close to capacity [4], has rekindled the interest in
bounds that overcome the Ro-limitation of the union bound, while keeping the upsides of it.
Specifically, these new bounds should be easily computed, and depend only on the weight
spectrum of the code: the latter property is especially important in view of the fact that with
turbo codes only the weights, averaged with respect to the possible choices of the interleaver,
are usually available.

For recent work in this area, see, for example, [7, 8, 14, 15, 16, 17, 18, 19, 20, 22, 23]. Of late,
one such family of upper bounds was proposed in [5]. This family turns out to yield the tight-
est known approximation to the error probability of turbo codes with large block lengths. Here
we first elaborate on these bounds, by showing how they can be further tightened through
riddance of a number of unnecessary terms in a summation. Further, we extend these bounds
to the fading channel. This paper is organized as follows. In Section 2 we briefly discuss the
usefulness of error-probability bounds, and define the “critical rate” of a bound. In Section 3
we expound the new bounds for the additive Gaussian noise (AWGN) channel and their im-
provements. In Section 4 we derive bounds for the fading channel and show their application

to the performance prediction of turbo codes and of low-density parity-check codes.

2 Range of usefulness of error-probability bounds

Consider a generic bound on word-error probability of a binary code with block length 7,
rate R, bit/symbol (and hence In2 - R, nat/ symbol), and minimum Hamming distance dyy,
transmitted over the AWGN channel with a ratio of energy-per-bit to noise-power spectral

density n £ F /No. Let the bound be expressed in the form

Ple) < Y e nERend), 1)
dzdmin

Range of usefulness of error-probability bounds 2
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where d denote the Hamming weights of the code. The exponent E(R,, 7, d) implicitly depends
on Ay the number of code words with weight d (the set { A} is the weight spectrum of the code).
We say that this bound is useful for a given 7 if E(R,, n,d) > 0 for all d. For a given code rate,
and d, let us consider min, E(R,, n,d) > 0. Denote the minimizing n by 79(d). Then we define
the critical signal-to-noise ratio 7 as the value of n such that 7 = max,n0(d) and the range

of usefulness of the bound is 17 > 7y

Random codes. Consider for example random codes. It is well-known (see, e.g. [11, ],[21,
p- 138 {£.]) that a random block code of rate R, and length n, transmitted over a binary-input,
output-symmetric channel, has an error probability with maximum-likelihood decoding which

is bounded (the “union-Bhattacharyya” bound [21, p. 129]), as
P(e) < e—n(Fo-in2Ro) @)
where Ry, the “cutoff rate” of the channel, has, for the AWGN channel, the expression
Ry=In2—In(1+e ®")  nat/symbol 3)
The bound (2) is useful for In2 - R, < Ry, which yields the following critical SNR:

1
Nerit = _'R_ In (21_RC - 1) 4)

Usefulness of the union bound for a specific code. Consider a linear binary block code, and
the union-Bhattacharyya bound [21, p. 142]

Pe) < > Age dRen (5)
d=dmin

The bound based on (5) has the form (1), with

Ind; d
E(Re,n,d) = === 1 ZRop

and hence

1 InAyz/n
Merit = Max 1(d) = max - 2/

d R. d/n ©

Range of usefulness of error-probability bounds 3
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The relation between (6) and (4) can be elucidated by picking a linear binary random code with

block length n and 2% code words (and hence rate R, = k /n). This yields

1 /n
Ao = 5z ()
which, as n — oo, tends to 2~ "~k enH(d/n) with I (-) the binary entropy function
H(z)2 —zlnzr — (1 —2z)In(1 — z). (7)

In conclusion, as n — oo the maximum value of 7 in (6) is achieved for d /n=1-2"(1-R)

and equals (4).

3 AWGN channel bounds

Consider in general the transmission of a geometrically-uniform [9] signal constellation X, with

|X| = M, over the AWGN channel, modelled in the form
y=7x+n 8

where X, y, and n are n-dimensional real vectors; in particular, x € X denotes the transmitted
signal vector, y the received vector, n a random noise vector whose components are Gaussian
random variables with mean zero and common variance 1, and v is a known constant. We
also assume that the code word components take on values +1, so that all signal vectors have
equal energy || x ||*= n. With maximum-likelihood (ML) decoding, the word error probability
when x is transmitted does not depend on x due to our assumption of a geometrically-uniform
constellation. It can be written in the form

Ple)=P || J{x— %} 9)

R£x

where {x — X} denote the “pairwise error event.” This is the probability that when x is trans-
mitted the Euclidean distance (ML decoding metric) between the received vector y and X is

smaller that the distance between y and x, thatis, {x - X} 2 {y : ||y —% ||<|| y —x ||} Notice

AWGN channel bounds 4
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that the set of y such that {x — X} occurs is a half-space in R, the locus of the points whose
distance from x exceeds the distance from X.

The number of terms in the union of (9) can be reduced if we remove any pairwise error
event that can be written as a union of other events that are retained. In particular, the number
of terms is minimized if we keep only the signal vectors x that are defined as follows. Define
the Voronoi region of x as the set of vectors in the Euclidean n-dimensional space R™ that are
closest to x than to any other X. The Voronoi region is a convex polytope in R, the intersection
of the half-spaces described above. The number of facets in this polytope is usually much lower
that |X}: for this reason it is convenient to remove the redundancy and redefine V by using only
the inequalities that are strictly necessary. To do this, we define the set of (Voronoi) neighbors of

x as the minimal set N such that
V={yeR" : |y —x[<|ly—X|, VR € N} (10)

The vector x itself does not belong to N. Based on this definition of N, we can rewrite the error

probability in the form
Ple)=P [U {x—»i}} (11)

XeN

Now, the union includes only |N| terms, the minimum possible number. . For future reference,
we can derive from (11) a “minimal” union bound by writing
P(e) <) P{x — %} (12)
XeEN
A bound tighter than (12) can be obtained as follows. Let d denote the generic Hamming
distance of X from x. Partition N into equivalence classes of vectors with the same value of d.

Denote these by Ny, and write

Ple) = PIJ U x—3%

deD XeNy

P x—-x

deD XENy

AN

AWGN channel bounds 5



Dariush Divsalar and Ezio Biglieri: Upper bounds to error probabilities ...

= > Pley (13)

deD

where D is the set of distances from x of the vectors in X, and
ea® | {x— %} (14)
XEN,

is the event that, when x is transmitted, at least one X at distance d is nearer to y than x.

3.1 Characterizing N

The characterization of N is a well-studied problem (see, e.g., [1, 2, 3, 13]). Although it gen-
erally requires a knowledge of the code structure that extends beyond its weight spectrum,
useful bounds are available. Let X be a binary linear block code with parameters n, k, dpin.
If w denotes the weight of the code word X (i.e., the number of —1s in it), then the following

theorem [2] yields simple bounds to N.

Theorem. For any binary linear block code
{)’Eex:1§w§2dmin~1}§3\f§{§(€x:1§w§n—k+1} (15)

Moreover, if the weight w # 0 of X cannot be written as w = i + j,wherei >1,7>1,and,j

are actual weights of words of X, then X € N. O

As an immediate consequence of (15), for a linear block code we can rewrite (13) as
n—k+1
Ple)< > Pley (16)
d=dmin
The bound above can be further tightened by using the rest of the Theorem. An algorithm is
also available [1] to derive the elements of N if the code words can be listed. For example,
from tables in [1] we can infer that N for the (31, 21) BCH code contains 107,198 words, while

|X| = 2,097,152. The number of words expurgated from the computation of the bound may

consequently be very large, especially when the rate of the code is greater than 1/2 (see [2]).

AWGN channel bounds 6
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We should also observe that the words excluded have large distances (in fact, from the
Theorem we see that all words notin N have a Hamming weight w > 2d,,i,): thus, the effect of

this expurgation would be especially felt at low signal-to-noise ratios.

3.2 The new bound

We now compute an upper bound to P(e) based on (13). To do this, we use a technique advo-

cated by Gallager in [10] and express Pey] as
Pleq] = Pleq, y € R] + Pleq, y ¢ R] 17)
where R is any region in R™. Further, observe that
Plea, y ¢ R <Ply ¢ R] (18)

where for the RHS to be a good approximation of the LHS one should choose R in such a way
that the two regions R (the complement of R in R") and {y : Usen, {x — X}} have about the
same shape and size. In practice, the selection of R should be guided by computational sim-
plicity. The new bound is based on the choice for R of an n-dimensional hypersphere centered
at yex and with radius v/nR. The parameters € and R will be selected so as to obtain the tightest
possible bound (notice that in general the choice of € and R will depend on d).

By combining (18) and (17) we obtain the upper bound

Plea] <Pleq, y € R+ Ply ¢ R] (19)

3.21 Computation of Ply ¢ R|

Let us compute the second term in the RHS of (19) first. We have

Py ¢ R =P i(yk — vexp)? > nR?| = P[W > 0] (20)
k=1

where we have defined the RVW £ 3" . (v, —vezs,)2 —nR2. We bound (20) using the Chernoff

bound P[W > 0] < IE[eSW], with 0 < s < % We observe that, under the assumption that x was

AWGN channel bounds 7
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transmitted, we have y = yx + n. Moreover, the components of n are independent RVs with

mean zero and variance 1, and || x ||?= n. Thus, we obtain

E[GSW] - e~snR2 H E [es((l-e)w:ckﬁ—nk)z}
k=1
_ s T 1 (1-e2y222s/1-29)
¢ kl;[l VIo2s
= ey (y,5,0) (21)
where
9(,8,€) & el /(1229 (22)
- &8
3.2.2 Computation of Ple;, y € R]
We have
P, ye® = P||J{x—%}, yeR (23)
XeNy
< Y Plx-%),yeR
XENy
= Y Plly-%|<ly-x|, yeR
XENy
= Y Py, ¥ <. %), |y rex |’< nR? (24)
XENy
The corresponding Chernoff bound can be computed [10]:
PIZ>0,W<O<E[?Y],  t>0,r<0 (25)
and with optimized ¢t = (1 — 2r¢)~/2 has the form
Plea, y € R] < Age™™ " fU(y, 7, €)g" U, 7 ¢) (26)
where g( -, -, - ) was defined in (22), and
Frre) & e F e @)
7 Vv1=2r
AWGN channel bounds 8
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If we select the value of e"®” that minimizes the Chernoff bound, and we define for nota-

tional simplicity

Aly, ry ) & Agfi(v, r, €)g" 4y, 7€) (28)
B(y, s, €) £ g"(v, s,¢) (29)

we obtain the neat bound
Pleq] < () A5 (1, 5, 0 B~ (, 7, ¢) (30)

where H(.) was defined by (7). Let 2s = (83— p)/(1—p), and 2r = (p=B)/pwith0 < p < B < 1.
As discussed in the Appendix, the factor e”/(?) (whose value ranges between 1 and 2) can be
ignored in the bound. Some algebra is required to minimize the bound (30) with respect toe, p,
and 3. First the optimum € = (8 — p(1 — %(1 - 06))/((1 - %(1 — B))(B — p)) is obtained. Next
we obtain the optimum p as

. 1
prE—— 3 (31)
1+ Te?(lnAd)/n

Then the bound can be expressed as

Ples) < exp{-nE(v*/2, d/n, 5)} (32)
where
2
E(v*/2, d/n, ) & -;-ln(l — B+ Be 2 Ad/ny 4 1—_%% (33)

and the optimum 23 is

/A]-——d/n 72 Qd/’fl 1 72 2_ 72
T 01 _d/nl-e2mdnm T \1T5) “1-{1+5 (34)

. . . — 2 In n 2
Since 0 < 8 < 1, the bound is valid for (1 — e‘glr‘Ad/”)%{L—" <L < %;—_%ﬁ for L >

eZ(ln Ad)/”'—l

S=d/marn We set 5 = 1. The important byproduct of this bound is the tightest closed form

critical signal-to noise ratio 7; that can be obtained as

e—anAd/n) 1 - d/TL (35)

1
e = g (1~ 537

R,

AWGN channel bounds 9
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A discussion of the relations between this new bound, the union bound, and other previ-
ously derived bounds can be found in [5]. In particular, the new bound has the smallest critical
SNR among the closed-form bounds known to the authors. Specifically, its critical SNR is the
same as for the bounds in [7, 14, 8], and is smaller than that of the bounds in [22, 12]. Indeed

we can show 7.y (35) can be bounded as

1 1
Terit < méix E—(l —¢72In Ad/")m S Nerit (Hughes) (36)
or can be bounded as
it < ma ! (InAg/n) Loap (Viterbi) (37)
Nerit & de R. d d/’l’L = Terit bl

where the upperbound on 7t can be derived using error probability bounds by Hughes [12]
and Viterbi-Viterbi [22] respectively. The above bounds on 7eyi; further can be upper-bounded
by (6). In [5] it is shown how (32) can be extended to the computation of bit error probability
by simply replacing A4 with Zfic{l %nAi,d where A; 4 is the number of codewords with input

weight ¢ and output weight d.

3.3 Refining the bound

Observe that the bound based on (32) is especially tight at low signal-to-noise ratios; since at
higher values of SNR the bound Ple] < A,Q(v/+2d) may be tighter. Using the above two facts,

we can refine (32) in the form
Ples] < minfexp{—nE(+%/2,d/n, )}, AsQ(v/+2d)] (38)

3.4 Comparison with other bounds

A comparison of the bound derived here with those obtained previously can be obtained as
follows. We compute the minimum achievable signal-to-noise ratio E, /No such that the error

probability bound for a given code tends to zero as the code block length increases to infinity.

AWGN channel bounds 10
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Fig. 1 shows such a comparison for random codes and Repeat-Accumulate (RA) codes (details

of the calculations can be found in [5]).

4 Independent fading channel bounds
The channel model here is described by the equation
Y =7vax+n 39

where o = diag (a1, ag, ..., @) is the diagonal matrix of the fading gains affecting the compo-
nents of the transmitted vector x. The fading gains o; are independent, identically distributed
random variables which we shall assume each to be Rayleigh-distributed with Elo?] = 1, ie,
to have the probability density function f,(r) = 2re™"", with » > 0. We use here the upper

bound, derived from (19),

Pleq) = EaPleq | o] < EaPles, y € R | al+ EqPly ¢ R | a (40)

4.1 Selection of the region R

Notice first that the decision metric in this case is based on the minimization of the norm

|y —yax| (41)

The simplest region suggested by (41) is a sphere with radius /7R centered at eyax, with ¢
and R parameters to be optimized. However, the resulting bound is not tight. Another choice
for R consists of a sphere centered at eyax but the radius of sphere depends on a. A simple
choice is

R={y [y —evox [P< nR* + 3" || ax |?} (42)

Notice that in this case equivalently we have

R={y | <lly I? =1y, ax) + ¢7° | ax ||>< nR?} (43)

Independent fading channel bounds 11
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where (, ¢, and R are now the parameters to be optimized. In the following we present the

bounds resulting from this choice of R.

4.2 The new bound

By replicating the computations described in section 3.2, except that now for independent

Rayleigh fading we should have

1 1
— 44
(1,2,¢,8) = ! ! (45)
R e B VT

where z can be the parameter 7 or s (see (28), (29), and (30)). Now let p £ s/(s =), then

s = —rp/(1 — p) further define a new parameter 8 £ p(1 — 2r(¢), where 0 < p<pB<1 As
for the AWGN bound, the factor e#(?) in (30) can be removed and the bound tightened. After

these change of variables we obtain a new bound for independent Rayleigh fading in the form

Pleq) < exp{—nE(v*/2, d/n, p, B, r, ¢)} (46)

where, after some algebra,

N 1- 1-
E(72/27 d/na o, 67 T, ¢) = —P(lnAd)/n + glng + TplnT___lﬁ (47)

72

+pg In I:l + 3'(1 — 27‘(]5):!

g
1-p(1-2r¢) (1-p(1- r))Q)J
1—p (1—-p)(1-5)

+p(1—d/n)In [1 + 7; 1—2r¢— M)}

+(1—p)1n[1+%2(

This bound first appeared in [6] without proof. The bound should be minimized with respect
to ¢, p, 8, and r. The minimum with respect to ¢ can be obtained in a closed form, while the

remaining minimizations must be performed numerically. The bound can be further tightened

Independent fading channel bounds 12
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at hlgh SNR as we dld in Secﬁon 33, by uSlng
e min < X nk Y d/n 1% /3 N (b y - d 4
d] > p > s My My d 0 si 2 9 2/2

Usefulness of the new bound. The suboptimum choice p =3 =1,7 =0, and ¢ = 0.5 yields

2
E(y*/2,d/n, 1,1, 0, 0.5) = —m:d + gln [1 + %J ; (49)

which is the exponent of the union-Bhattacharyya bound for the independent Rayleigh fading
channel. By recalling the discussion in Section 2, as n — oo this suboptimum bound becomes

useless when

2 1
In [1 + %} = IZI/E:LX (L;}%)/—n (50)

For large block length n and random codes we have

ln;‘d = H(d/n) — (1 - R)2 (51)
so that
In A
d/ai((nd—/‘;)/q =—In [21_R° —1] (52)

and the minimum SNR for the validity of the bound turns out to be

2
¥ 1
<7) e e (53)

Since v?/2 = R.n, this corresponds to

1 1

Nerit = W "R (54)

which, not unexpectedly, is the equation for the cutoff rate of the independent Rayleigh fading
channel. Since with optimum parameters our bound is tighter than the union-Bhattacharyya
bound, we can expect it to have a lower 7. This is confirmed by numerical calculations,
which show that for R, = 1/2 the new bound is useful above 3.06 dB, while the cutoff rate is
achieved at 4.52 dB. Thus, our bound outperforms the union bound by about 1.5 dB, although

its usefulness cannot extend to capacity (which for a rate-1/2 code is 1.8 dB). As R, — 0, the

Independent fading channel bounds 13
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union-bound critical SNR tends to 1.46 dB, while the new bound is useful up to —1 dB. This

suggests that the new bound is tighter for low-rate codes.

4.3 Examples

The simple bound for AWGN channel can be used to obtain the word error probability of Low-
Density Parity-Check (LDPC) codes with ML decoding. as shown in . The example of Fig. 2
refers to rate-1/2 (n, j, k) LDPC codes with n = 10000, j = 3,4,5,6, and k = 2j. In the second
example, shown in Fig. 3, the simple bound for AWGN channel is applied to obtain the ML
performance of rate-1/4 RA codes. The figure also shows the simulated performance of the
(suboptimum) iterative turbo decoder. Our third example, illustrated in Fig. 4, applies the
simple bound for Rayleigh fading channel to obtain the ML performance of rate-1/4 RA codes.

The simulated performance of the iterative turbo decoder is also shown.

5 Conclusions

We have presented a general bounding technique, obtained from Gallager’s (19). By choosing
a suitable region R in a parametric form and optimizing its parameters, a bound was obtained
which is useful beyond the cutoff rate, and hence lends itself to be applied to coding schemes
operating at low signal-to-noise ratios. After summarizing the application of our bounding

technique to the AWGN channel, we have extended it to fading channels.

APPENDIX: A relation between two bounds due to Gallager

In this Appendix we prove that the factor exp H (p) can be omitted from bound (32). We do this
by showing a relation between two upper bounds proposed by Gallager and used in several

recent investigations into bounds that extend beyond the cutoff rate. These are (19), which

Conclusions 14
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will be referred to in the sequel as the geometric bound (GB), and the generalized union bound
(GUB) [11], valid for any p > 0,

P[ed}sZ[P<y|x>J“<1*P>{ > [P(ymnl/“*ﬂ)} (55)

REXy : RfX

where Xy denotes the subset of code words of X whose Hamming distance from x is d.

First, rewrite (55) in the form

A\T A P
CELURI Y -

REX, : R£x

where we write A for 1/(1+ p). Next choose, following Duman and Salehi [8], any nonnegative

function f(y), and rewrite the bound above in the equivalent form

o) 17 TPy R
]p[ed]gzy:f(y){ Z# {P(ylx)} {P(ylx)] } v

ﬁexd P R#EX

Inequality (57) can be generalized (and possibly tightened) by introducing a new parameter
s > 0 as follows:

sy 1-r
Sy ———""

Y

I o e e s

ReXy : REX Y

Consider now the GB (19), with R in the form

£ o] <o)

By using the same techniques as in Section 4.2 (that is, Chernoff bounding and optimizing with

respect to R), we obtain

iy 1V
Pleq] < H(p){ v }
! ;[ X (Y|x)}
(y) 1 [P(y|%)]*1-V/» ?
x{ Z ZPY|X[ (y(x)} {P(y|x)] )

XXy : X#X Y

which is (58) multiplied by a factor exp H(p). Thus, removing exp H (p) from (60) we still have

an upper bound, viz., the one obtained from (58).

Conclusions 15
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Figure 1: Comparison of different bounds: minimum signal-to-noise ratio necessary to achieve
a vanishingly small error probability over the AWGN channel for different code rates as the
code block length grows to infinity. Random codes and RA codes are used. “SIMPLE:” bound

described in this paper. “VITERBI.” see [22]. “HUGHES:” see [12]. “Gallager (capacity):”
see [11].
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Figure 2: Performance of LDPC codes over the AWGN channel: simple closed-form bound.
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Figure 3: Performance of rate-1/4 RA codes over the AWGN channel: simple closed-form

bound for ML decoding, and simulated values for the iterative turbo decoder.

REFERENCES

20



Dariush Divsalar and Ezio Biglieri: Upper bounds to error probabilities ...

100
Simple ML bound k=input block size
k=4096 Rayleigh fading with CSi
-1
1075 RA Code
T o
102 Simple ML bound —E =2 ‘-
k=1024 [D]
/ rep. 4 accumulator
10-34
iterative decoder
2 20 iterations union ML bound input
© / k=1024 block=1024
o 104
S
5 /
=
w iterative union ML bound input
ot N =
= 10-5 decoder block=4096
20 iterations
k=4096

10-6

107

10.8 T T T L L}

1.0 1.5 2.0 25 3.0 3.5
Eb/No

4.0

Figure 4: Performance of rate-1/4 RA codes over the Rayleigh fading channel with perfect

Channel State Information (CSI): simple closed-form bound for ML decoding, and simulated

values for the iterative turbo decoder.
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