HPC Challenges for NanoElectronic Modeling (NEMO)

Gerhard Klimeck

Jet Propulsion Laboratory, California Institute of Technology

gekco@jpl.nasa.gov, 818-354-2182
http://hpc.jpl.nasa.gov/PEP/gekco

This research was carried out by at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
Thanks to:
NEMO Core Team Members

NEMO 1-D
Roger Lake, Texas Instruments / UC Riverside
R. Chris Bowen, Texas Instruments / JPL / Texas Instruments
Tim Boykin, U Alabama in Huntsville
Dan Blanks, Texas Instruments
William R. Frensley, UT Dallas

NEMO 3-D / Synthesis
Fabiano Oyafuso, JPL
Seungwon Lee, JPL
Paul von Allmen, JPL
Olga Lazarenkova, JPL
R. Chris Bowen, JPL
Thomas A. Cwik, JPL

Funding by NRO, ARDA, ONR, NASA, JPL

Gerhard Klimeck
Applied Cluster Computing Technologies Group
NEMO 1-D:
A User-friendly Quantum Device Design Tool

- NEMO was developed under a government contract to Texas Instruments and Raytheon from 1993-97
 - >50,000 person hours of R&D
 - 250,000 lines of code in C, FORTRAN and F90
- Based on Non-Equilibrium Green function formalism (Datta, Lake, Klimeck).
- NEMO in THE state-of-the-art heterostructure design tool.
- Used at Motorola, HP, Texas Instruments, US Government Labs, and >10 Universities.
Development of NEMO 3-D

Approach:
- Leverage NEMO 1-D:
 - 25 person years at TI / Raytheon
 - 250,000 lines of code.
- Use local orbital description for individual atoms in arbitrary crystal / bonding conf.
 - Use s, p, and d orbitals
 - Use genetic algorithm for fitting
- Compute mechanical strain in the system.
- Develop parallel algorithms to generate eigenvalues/vectors of very large matrices (N=3.2x10^8 for a 16 million atom system).
- Develop prototype GUI for (NEMO-3D)

Electronic Structure for Systems of up to 30 Million Atoms on Beowulf Cluster

Gerhard Klimeck

Applied Cluster Computing Technologies Group
Heterostructure Applications:
Transitions & Functionality Controlled by Design

Photon Absorption

Photon Emission

Tunneling

Detectors

Lasers

Logic / Memory

Quantum Well
Infrared Detector

Quantum Cascade
Laser

Resonant
Tunneling
Diode

Gerhard Klimeck

Applied Cluster Computing Technologies Group
Genetically Engineered NanoElectronic Structures (GENES)

Objectives:
- Automate nanoelectronic device synthesis, analysis, and optimization using genetic algorithms (GA).

Approach:
- Augment parallel genetic algorithm (PGApack).
- Combine PGApack with NEMO.
- Develop graphical user interface for GA.

How do you know what you have built?

Results:
- Nanoelectronic Device Structural analysis

GA analyzed atomic monolayer structure and doping profile of RTD device
Black: structure specs, Blue: Best fit

Gerhard Klimeck

Applied Cluster Computing Technologies Group
Computational cost:
- 30 minutes compute time / individual
- 2000 individuals evaluated
- 1000 serial compute hours
- 31 hours compute time on 32 CPUs
 (in 1998 on neptune.cacr.caltech.edu)

Results:
- Nanoelectronic Device
- Structural analysis

GA analyzed atomic monolayer structure and doping profile of RTD device
Black: structure specs, Blue: Best fit

Gerhard Klimeck
Applied Cluster Computing Technologies Group
Bottom-up, Atomistic 3-D Quantum Dot Simulation for Revolutionary Computing and Sensing

Atomic Orbitals size: 0.2nm \(\rightarrow \) Structure \(\rightarrow \) Nanoscale Quantum States (Artificial Atoms, size 20nm) \(\rightarrow \) Designed Optical Transitions Sensors

Computational Cost:
- One structure / individual: 1-10 hours on 20-40 CPUs running in parallel
- Cannot even think about running GA based evolution right now!!!!
- Have no implemented architecture
 - Need a parallel GA running parallel applications underneath

Need multiple parallelisms

Gerhard Klimeck
Applied Cluster Computing Technologies Group
Exploration of the Design Space is Bound By Computation!

- Fundamental nanoelectronic tools exist already and are being improved!
 - 1-D Quantum Transport is Solved!
 - 2-D / 3-D Quantum Transport bound by Computation
- GENES - Design Synthesis needs compute power!

Advanced Device Simulation

End of SIA Roadmap

Dopant Fluctuations in Ultra-scaled CMOS

Electron Transport in Exotic Dielectrics

(Ba,Sr)TiO₃ TiO₂

Gerhard Klimeck

Applied Cluster Computing Technologies Group