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ABSTRACT

 

The use of wavefront measurements to deduce the state of multiple optics in a telescope beam train — their
misalignments and figure errors — can be confused by the fact that there are multiple potential sources for the same
measured error. This talk applies Kalman filtering techniques as a tool for separating true telescope errors from
artifactual testing errors in the alignment and testing of NASA’s James Webb Space Telescope, a large segmented-
aperture cryogenic telescope to be launched after 2010.
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INTRODUCTION

 

The testing of an optical system often involves the introduction of test-specific optics, such as collimators,
autocollimating flats, light sources, null lenses, interferometers and the like. These test optics bring additional sources
of aberration — aberrations that are easily confused with errors in the target optical system. For small systems tested in
stable laboratory conditions, the test-optics aberrations may be calibrated and removed from the test data. For large
telescopes, identifying and separating the (perhaps time-varying) aberrations of the test optics from the target system
is more challenging. This is especially true for light-weight, cryogenic space telescopes such as the James Webb
Space Telescope, where the test may occur in conditions that are significantly different from its on-orbit environment,
and where the sheer size of the telescope (6.5 m aperture) makes independent calibration of the test optics difficult or
impossible.

This paper presents a testing methodology, based on optimal estimation theory,  that provides a rigorous framework
for identifying and separating errors in the test optics from those in the target system. It provides a method for
combining all test data, including component test data, alignment metrology, as well as wavefront measurements and
other metrology taken during an extended test sequence, to produce an optimal estimate of the state of all of the
optics. This method utilizes knowledge of the measurement errors, actuation errors, and prior knowledge errors to
optimally combine the various sources of information. It  provides estimate error bars  as well as the estimates
themselves.

The application of interest is the testing of the James Webb Space Telescope (JWST) at the NASA Plum Brook, Ohio,
cryogenic vacuum facility. JWST is an 18-segment, 6.5 m segmented-aperture, cryogenic, space telescope for visible
and infrared astronomy. JWST is an actively controlled telescope, meaning that the primary mirror (PM) segments
and the secondary mirror (SM) are equipped with actuators, and can be adjusted to correct some aberrations after
launch. JWST, which is scheduled for launch early in the second decade of this century, will extend our scientific
reach into the period of the formation of the earliest galaxies. It will have sufficient sensitivity, resolution and field to
perform a deep-field observation many times faster and deeper than the Hubble deep field observations. 

The JWST Wavefront Sensing and Control (WFS&C) system provides limited correction of aberrations after
launch.
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 Each of the 18 segments is equipped with 7 Degrees-of-Freedom (DOF) of actuation: tip, tilt and twist
rotation; X and Y-decenter and piston translation; and focus correction. This system permits correction of segment
deployment errors. It provides limited correction of segment Radius of Curvature (RoC) and astigmatism errors also.



 

 

 

MODELING JWST AT PLUM BROOK

 

JWST will be integrated and tested in the huge cryogenic vacuum chamber at Plum Brook. This facility was chosen for
its large size and its relatively quiet seismic environment. When equipped with He and N
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 shrouds, it should permit
operation of JWST at approximately orbital temperatures. JWST will be suspended from a tower, with the telescope
facing down, and sensitive elements supported by gravity off-loading mechanisms. The greatest deviation from orbital
conditions is the fact that the testing will be done in gravity. 

In this study we consider the testing of the JWST Optical Telescope Element (OTE) prior to installation of the various
science instruments. The OTE is our target system,  and consists of the PM, SM, a Tertiary Mirror (TM), a Fine
Steering Mirror (FSM) and a pupil mask located very near the FSM, at an image of the PM entrance pupil. The test
optics  consist of a set of Auto-Collimating Flats (ACFs) arranged for an autocollimation test. Metrology will be
provided during the test by 2 multi-color interferometers, one located at the center of curvature of the PM and
observing PM figure; the other located in the Integrated Science Instrument Module (ISIM) and observing the OTE
beam train in double-pass. The interferometers will operate nearly continuously, with information taken nearly
simultaneously. The test setup is sketched in Fig. 1.

 

Fig. 1. Testing the JWST OTE, showing 2 light paths. The CoC Interferometer (CoCI) monitors the PM figure from the PM center of 
curvature. The Focal Plane Interferometer (FPI) measures the entire telescope in double pass, using the sub-sampled aperture ACFs 

to return light.
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Perhaps the best way to visualize the test is to examine the effect of the various DOFs on the interferometer wavefronts.
For example, displacing one of the segments in the local piston DOF causes a hexagonal step discontinuity in the PM
figure, as seen in the CoC WF, while the effect in the FP WF is a pie-shaped,  truncated hex displacement. More
examples are provided in Figs. 2 and 3, which show the wavefronts of both light paths as optical path-difference (OPD)
matrices, evaluated at the exit pupils of the CoC and FP interferometers. 

There are a total of 369 optical DOFs of primary interest, including displacement, rotation and deformation DOFs for
each element of the telescope and each test optic. We term these DOFs the optical state, and organize them into a long
column vector 

 

x

 

, so that each element of 

 

x

 

 is a perturbation value for a particular optical DOF, as summarized in Table
1.  Not every DOF affects both light paths. The CoC light path is not influenced by the telescope optics other than the
PM segments, and the FP light path is unaffected by perturbations of the null lens. The PM DOFs are common to both,
but affect them differently, as is illustrated in Fig. 4.

 

Fig. 2. Wavefronts seen at the CoC and FP interferometers in response to PM segment rigid-body and RoC DOFs.

Fig. 3. Wavefronts seen at the CoC and FP interferometers in response to PM segment deformation DOFs.

 

Table 1: Degrees of freedom and initial state error standard deviations for the 369 elements of 

 

x

 

.

 

DOF Initial Std Dev DOF Initial Std Dev

 

Segment tilt 200 urad Null lens 6 nm

Segment twist 286 urad TM tilt 100 urad

Segment decenter 100 um TM decenter 10 um

Segment piston 200 um TM piston 10 um

Segment RoC 10 nm FSM tilt 100 urad

Segment deformation 20 nm/mode for 8 
Zernike modes

FSM deventer 10 um

Single-pass WF as seen in CoCIDouble-pass WF as seen in FPI

Single-pass WF as seen in CoCIDouble-pass WF as seen in FPI



 

 

 

These simulated WFs were generated using a computer model, which traces rays simultaneously through both light
paths, from the sources to the interferometer exit pupils, where they are detected. The path length of each ray represents
the phase of the corresponding small patch of the entire wavefront, and (after subtracting the mean) is recorded as an
entry in the WF matrix WCoC or WFP. The model was written using the MACOS
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 optical modeling code, linked as a
function to the Matlab

 

TM

 

 analysis software.

The model has 2 main purposes. The first is to provide a simulation of the test, which we use as a substitute for the real
thing as we develop test procedures. Here we generally use the full nonlinear ray-trace and kinematics of the MACOS
model. The second purpose is to provide a model for use in the estimation and control algorithms. For this purpose, a
linearized version of the full model is especially useful. 

The linearized model consists of 2 matrix equations: the 

 

measurement equation

 

, which defines the way the optical state
affects the interferometric wavefront measurements; and the 

 

state transition equation

 

, which governs the evolution of
the optical state forward in time. The measurement equation can be generated by differentiating the ray-trace model,
either analytically
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 or through numerical differentiation.

Rather than working directly with the Optical Path-Difference (OPD) matrices 

 

W

 

, it is convenient to reorder the
matrices into column-vector form, by stacking successive columns of the 

 

W

 

 matrices. The wavefront vectors are
denoted 

 

w

 

CoC

 

 and 

 

w

 

FP

 

. The 2 forms of the WF are related simply by:

 

 (1)

(2)

 

The measurement equation is then formed as:

 

(3)

 

Here the subscript 

 

i

 

 denotes the i

 

th

 

 time step in the simulation time sequence, where each subsequent value of 

 

i

 

 is some

 

∆

 

t

 

 after the preceeding. The time interval 

 

∆

 

t

 

 is not necessarily constant, and the various sensitivity matrices may change
as different measurements are taken. The 

 

ν

 

i

 

 is the noise in the i

 

th

 

 measurement, or the WF sensing error. The dimension
of 

 

x

 

 is several hundred, and the dimension of w is several thousand, so the partial derivative matrices 

 

∂

 

w/ 

 

∂

 

x

 

 are quite
large. 

The 

 

∂

 

w

 

 

 

/ 

 

∂

 

x

 

 are the 

 

sensitivities

 

 of the WF to variations in the optical state. A simple algorithm for generating the
sensitivities is to poke  each DOF in succession, recording the resulting WF matrix, subtracting the nominal WF, and

 

ACF tilt 100 urad FSM piston 10 um

ACF piston 100 um Segment actuator tilt 10 nrad

ACF deformation 25 nm/mode Segment actuator 
piston

5 nm

SM tilt 200 urad SM actuator RoC 5 nm

SM decenter 20 um ACF actuator tilt 1 urad

SM piston 20 um ACF actuator piston 1 um

SM deformation 4 nm/mode WFS error (lo/high) 1 nm / 30 nm

 

Table 1: Degrees of freedom and initial state error standard deviations for the 369 elements of 

 

x

 

.

 

DOF Initial Std Dev DOF Initial Std Dev

w vector W( )=

W matrix w( )=

wi
wCoC

wFP i

x∂

∂wCoC

x∂

∂wFP

i

xi
νCoC

νFP i

+
x∂

∂w xi⋅ νi+= = =



 

 

 

normalizing by dividing by the poke value. This yields an approximation to 

 

∂

 

W

 

 

 

/ 

 

∂

 

x

 

 for that DOF. Applying the vector
operator to 

 

∂

 

W
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∂

 

x

 

 results in a column vector version, 

 

∂

 

w

 

 

 

/ 

 

∂

 

x

 

j

 

 

 

, which forms the j

 

th

 

 column of the full 

 

∂

 

w

 

 

 

/ 

 

∂

 

x

 

 matrix.
This algorithm works with the model or with actual hardware.

WF measurements will be made using multi-color interferometers that combine measurements at multiple wavelengths
to achieve long synthetic wavelengths for the resolution of 2

 

π

 

 ambiguities in the WF. This feature is used for measuring
the relative piston of the various segments. Performance is projected to provide large capture range (many 

 

µ

 

m) and
high accuracy (nm). In this study we use different values for WFS error, depending on the average piston error (low or
high, as per Table 1). 

The state transition equation governs the evolution of the state between measurements, which in the actual test will be
driven by environmental factors and by control actuations. In a complete model, the transition equation would include
structural and thermal models, and would be driven by environmental states or forcing functions. Once the telescope
and test structures are designed, we will adopt such a model. In the mean time, we are taking a statistical, requirements-
level approach where all disturbances are random but limited. The transition equation takes the form:

 

(4)

 

In our case, where change in the optical state is noise and control driven, the transition matrix 

 

∂

 

x

 

i

 

 + 1

 

/ 

 

∂

 

x

 

i

 

 is simply the
identity. State-vector drift  is driven by the process noise 

 

ξ

 

, which is a gaussian random vector that will tend to drive
the states in a random walk. The values of 

 

ξ

 

 are randomly selected for each 

 

i

 

, with standard deviations consistent with
the amount the states can be expected to change, regardless of the cause, over that time interval. 

Control actuations are 

 

u

 

i

 

, with noise 

 

δ

 

u

 

i

 

. Only a subset of the states are directly actuated. Within the OTE these are the
PM segment rigid-body DOFs, the PM RoC, the 5 SM DOFs, and 2 FSM DOFs. These DOFs are actuated using single-
axis linear devices arranged in hexapod configuration. These actuators are capable of high-precision control. Within the
test optics, the ACF tip, tilt and piston are controlled. These actuators are less precise, which presents certain challenges
discussed later on. JWST hexapod kinematics and control have been analyzed previously
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 and are ignored in this study.
The control influence matrix 

 

∂

 

x

 

 

 

/ 

 

∂

 

u

 

j

 

 

 

is essentially a selection matrix, mapping the controls into the state.

In simulations, the values of 

 

x

 

 with time are determined by initializing 

 

x

 

 = 

 

x

 

0

 

 with values consistent with the required
alignment and figure quality of the telescope and test optics. The subsequent values of 

 

x

 

i

 

 are computed by integrating
the transition equation forward in time using Eq. 4. At each time step, new state noise values are added, and new
controls (with corresponding actuator errors) may be added based on the measured 

 

w

 

 for that time.

The initial state errors 

 

x

 

0

 

 are determined from the specifications and requirements governing the fabrication and
assembly of the OTE and test optics. These specifications provide error standard deviation values for each of the DOFs
based on anticipated assembly tolerances and figure residuals, as per Table 1. In this work we assume that the errors in

 

x and u, the process noise ξ, and the measurement errors ν, are gaussian random variables. We assume that they are zero
mean, based on incorporation of all known errors (such as gravity sag) into the underlying models. With these
assumptions, particular realizations of the initial state vector can be computed using a Gaussian random number
generator. The overall process defined by these assumptions and Eq. 4 is a Markov process.8

The process noise ξ drives the growth of the state x with time. Typical values of ξ are listed in Table 2. The error
statistics driving x0, ξ, δu and ν are important non-deterministic parts of both the linear and nonlinear models. By
creating many realizations of these values consistent with their assumed statistics, simulating the test for each
realization, and then taking statistics on all of the results —  Monte Carlo analysis — we can develop a statistical
understanding of the performance of the test.

We can also use extensions of Eqs. 3 and 4 to propagate the covariance of the state vector directly, and in that way to
evaluate the statistical performance of the test in a single evaluation — rather than the many cases required in Monte
Carlo analysis. This covariance analysis approach allows the direct propagation of the standard deviation of x for a
particular test sequence. Covariance analysis also underlies the formulation of the Optical State Estimator. 

xi 1+ xi∂

∂xi 1+ xi ui∂

∂xi 1+ ui uiδ+( ) ξi+ + xi ui∂

∂xi 1+ ui uiδ+( ) ξi+ += =



 

For a linear gaussian random vector x, the following general transformation holds.8 If a vector y = H x, then y is also a
linear gaussian random vector, with covariance Y, where

. (5)

In general we will denote the covariance of a random vector as the capital letter of that variable. Thus cov(x) = X,
cov(w) = W, cov(ν) = Ν. Also, cov(δu) = U, cov(ξ) = Ξ, etc. Applying the rule of Eq. 5 to Eq. 4, we get the state
covariance transition equation:

(6)

This is a discrete Lyapunov equation.8 The covariance of the ith wavefront is:

(7)

The corresponding RMS WF error is

(8)

Here nray is the number of WF samples.

TWO METHODS OF CONTROL

The controls u can be determined from the wavefront measurements w in 2 differing ways. The first is by direct
feedback of w. In this method, no effort is made to determine whether a particular WFE component is due to errors in
figure or alignment, or whether it is due to one or another element. A WF-feedback control law is:

(9)

(10)

Here the super +  signifies the pseudo-inverse, necessitated because there are many more WF samples than control
DOFs, and usually implemented using Singular-Value Decomposition techniques.7 This general form can be applied to
different selections of control DOFs ui. For instance, ui might include only the PM DOFs, and w might be just wCoC, to
implement a control that sets the PM independently of the rest of the OTE.

The second method of control is to use state feedback,  where some of the values of x are explicitly estimated, and
then directly compensated through the control. This more subtle approach permits effective control of DOFs, such as
SM misalignments, that the first method could not distinguish from errors elsewhere in the optical train.

THE OPTICAL STATE ESTIMATOR

The function of the Optical State Estimator (OSE) is to take in all of the data available concerning the test, and to
process that data to determine the underlying optical state x of the test. The available data includes all of the pre-test
component measurements, which are folded into the as-built  model of the system. It includes all of the WF

Table 2: Components of drift: typical values for the process noise ξ.

DOF ξ value DOF ξ value

ACF tilt 1 urad/measurement ACF piston 1 um/measurement

PM segment tilt 0 PM segment piston 0

Y HXH
T

=

Xi 1+ Xi ui∂
∂x Ui ui∂

∂x T
Ξi+ +=

Wi x∂
∂w Xi x∂

∂w T
⋅ ⋅=

WFEi trace Wi( ) nray⁄( )=

u Gw–=

G
x∂

∂w
ui∂

∂x⋅
+

=



 

measurements made during the test (which will be many). It also includes knowledge of the level of error in the
component and wavefront measurements: X as well as x; W as well as w. Also known is the covariance of the
measurement and actuator errors, and the covariance of the process noise. 

With this information, formally optimal estimates can be made using Kalman Filter techniques.8 The Kalman Filter
(KF) is a Maximum-Likelihood linear system estimator in recursive form, which allows it to produce estimates that are
optimal at the time each new measurement is taken, while preserving the value of all previous measurements. It is a
powerful tool, used in applications such as flight control that require the mixing of data from diverse sources to produce
precise current state estimates. It is perhaps underutilized in optics. We will not derive the KF here, as there are several
excellent texts on the subject.

The KF is a predictor-corrector  estimator, where at each measurement we make a prediction of the measurement,
based on the information we had at the last measurement, and compare that to the actual current measurement. The
difference of the predicted and actual measurements, termed the innovation, is multiplied by a gain matrix and fed back
to update the estimate. The gains are weighted by the covariances of the measurement and prior-estimate errors, so as to
achieve an optimal blending of prior and current information. 

The prediction is made by taking the estimate computed at the preceding time step and simply projecting it forward in
time using Eq. 4. We know the value of the control we commanded, so that goes into the prediction as well. The
predicted measurement is then calculated by projecting the predicted state to the WF space using Eq. 3. Denoting the
predicted state at time i with an over-bar as , and the estimated state with a hat, as , the predicted state is:

(11)

The predicted measurement  is thus:

(12)

The new state estimate is simply the prediction plus the innovation weighted by a gain matrix Ki:

(13)

The gain balances the contribution of the innovation to the current estimate as the ratio of the error in the predicted
state, as captured in the predicted-state covariance Pi, to the error in the measurement projected back to the state space
via the transpose of the measurement matrix. We treat the actuator commands as known signals with a measurement
error  equal to the actuation noise projected to the WF space. 9 The error in the measurement is the covariance matrix
Ri, which includes the WF measurement error and the actuation error . The gain is:

(14)

The measurement error covariance, which captures the uncertainty in both the actuation and the measurement, is:

(15)

The error in the estimate  is captured by its covariance Pi, which combines the measurement and predicted-state error
covariances Ri and Mi in the state space, as:

(16)

The covariance of the predicted state  is computed based on the covariances of the error in the previous estimate,
projected forward to the current time:

xi x̂i

xi 1+ x̂i ui∂
∂x ui ξi+ +=

wi

wi xi∂
∂w xi=

x̂i xi Ki wi wi–( )+=

Ki Pi xi∂
∂w T

Ri
1–

=

Ri ui∂
∂w Ui ui∂

∂w T
Νi+=

x̂i

Pi xi∂
∂w T
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xi∂
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+ 
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=
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(17)

For gaussian normal random processes, the KF estimator of Eq. 13 produces optimal estimates, in the sense that they
make the best possible use of the available information, producing estimates with minimal error. In fact, the KF defines
the Cramer-Rao bound for such processes.8 In practical problems the KF assumptions are not always precisely met. The
statistics of the processes may not be normal or stationary, the plant may not be truly linear. Many extensions to the KF
have been developed to deal with specific situations of this type. However, for small deviations from the assumptions
underlying the KF, the KF provides an excellent, though not precisely optimal, tool. 

To illustrate the effect of the gain matrix K in balancing prior estimates versus current measurements, it is useful to
consider 2 extreme cases. The first case occurs when the error in the prior estimate is very small and very much smaller
than the measurement noise, so that . Then

(18)

and the estimate is simply the prediction:

(19)

The other extreme case occurs when the combined measurement noise is very much less than the error in the prior
estimate. The gain (Eq. 14) can be rewritten using the inversion lemma as:

(20)

Now when , 

(21)

and the estimate (for an invertable plant) inverts the measurement equation.

Equations 11 to 17 are a complete expression of the OSE for JWST testing. The equations are reapplied multiple times
in each test, but with different matrices, as the conditions and measurements change. These changes come if we
perform measurements without control, or control without a measurement, or if we make a partial measurement (CoC
only, for instance). The matrices may also change during the test if we choose to recalibrate. 

The OSE can be improved and extended, by post-processing all of the data utilizing smoother techniques,8 by
incorporating plant nonlinearities into the filter, or in other ways. These will be investigated.

TEST PROCEDURES, AND AN EXAMPLE

An example best illustrates the effectiveness of the OSE in estimating the optical state of JWST at Plum Brook. Here
we will run through a single simulated test, where the OTE has been instaled and aligned to the tolerances specified in
Table 1. In broad strokes, the test procedures are as follows:

1. Initial condition. The OTE is aligned to tolerances as per Table 1. A tilt-acquisition step is performad, using optical 
feedback to drive the segments to return light to the CoC interferometer. The segments are deformed by gravity sag 
(this effect is included in the model and amounts to about 65 nm RMS). An illustration of the WFs for both light 
paths is provided in Fig. 4, which also shows the estimated WF,  which is the projection of the post-measurement 
state estimate to the WF space:

(22)

2. Between and during each control step, the optical alignments drift slightly (as per Table 2). To keep estimation error 
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small, measurements continue (but are not all shown in the figures).

3. The first control step is to align and correct the RoC of the PM segments using the CoC interferometer. The effect of 
this is to reduce the CoC WF (after several iterations of control) to about 281 nm, which is the limit imposed by the 
gravity sag errors. The FP WF remains large, as the ACF phasing is not corrected. WF estimation error is quite 
small, as the measurement errors are assumed to be small. Results are shown in the center columns of Fig. 4. 

Fig. 4. Wavefront plots, showing the actual WF (top row), estimated WF (middle row), and estimate error (bottom row) as the 
simulated test proceeds. The estimated WFs are computed from the estimated state via the measurement equation.

4. The second control step is to set the ACFs in tip, tilt and piston using the FP interferometer. The ACF actuation error 
is quite large, so while the post-ACF control FP WF error is reduced substantially, it remains well outside target 
levels. The CoC WF is not affected by this control(Fig. 4).

5. The third control step is a tweak  adjustment of the SM and FSM. Further drift occurs — but the estimate error 
remains small (Fig. 5 left column).

6. The final control step uses the segment actuators to null the WF in the FP light path. This has the effect of dephasing 
the CoC light path, as the segments move in triads  to control the FP piston errors. Again, with small measurement 
errors, the estimated WF errors are quite small (Fig. 5 center column).

7. To determine the fundamental accuracy of the estimation process, we project the OTE state estimates to on-orbit  
conditions using a third optical model, which represents the single-pass, full telescope errors on orbit:

(23)

The low error of the on-orbit prediction errors (22.4 nm RMS) verifies that the OTE errors have been successfully 
unravelled from the test optic errors. The small residuals are well within the control spatial-frequency bandpass and 
stroke limits, so the post on-orbit WFC errors will be smaller yet. 

The effect of the test on the state estimate error is shown for each DOF in Fig. 6 As shown, the error in most states is
reduced very dramatically. Some states are not well estimated, but those are DOFs that do not significantly impact the
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WFs, and so are not DOFs we care much about. As a general rule, if the optical test measures the quantity of ultimate
interest (such as WFE), the OSE will estimate those errors that are of concern. 

Fig. 5. Wavefront plots, showing the actual WF (top row), estimated WF (middle row), and estimate error (bottom row) as the 
simulated test concludes. The on-orbit  predicted performance shows that the OTE and test optics errors have been well separated, 

so that the tilt-removed prediction error is only 22.4 nm. 

Fig. 6. State estimate error at the beginning and end of the test. The error in optically-active states has been reduced dramatically, 
consistent with the performance illustrated in Fig. 5. States that affect the optical performance weakly are less well estimated.
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MONTE CARLO ANALYSIS

In the single example of Figs. 4-6 we accurately estimated x using measurements of w, in a case where the initial errors,
drift, measurement and actuator noise were consistent with Tables 1 and 2. But — what are the limiting factors in this
performance? Will the test work when measurements are noisier? What if the ACFs are continuously drifting? To
answer these and other questions over a broad range of conditions, we perform Monte Carlo analysis, varying some of
the input statistics, creating many different realizations of the errors, running a simulated test for each, and then plotting
the statistics of the results. 

An example is provided in Figs. 7 and 8, where all error statistics were left constant except the ACF drift parameters.
These were varied in increments between 10 nrad and 1 mrad for drift (left plot) and between 1 nm and 100 um for
piston (right plot) (1 sigma). Fifty seperate random realizations were run for each data point. Several trends are
obvious. The first is that WF error, both estimated and actual, grows as the drift grows. The second is an error floor for
the actual WF, set by the ACF actuation error at about 8 µm. The third is an error floor for the telescope-only ( on-
orbit ) WF estimation error, at about 20 nm. Good estimation performance is obtained for drift error sigmas of < 40
nrad and < 50 nm per measurement interval for tilt and piston respectively. Fortunately, the drift sigmas can be kept
small by by keeping the time between measurements small, by making frequent measurements between control steps.

Fig. 7. Monte Carlo results showing WF and WF estimation performance as a function of ACF tilt drift sigmas.

As depicted in Fig. 9, the noise floors were further explored, again using Monte Carlo analysis, applying the nominal
conditions of Tables 1 and 2, and varying the WF measurement error (left plot) and the ACF actuation error (right plot).
The nominal error points in each case are indicated by arrows. 

Good performance for WF estimation error seems to require 3 nm sensing error or better. Keeping in mind that the
sensing error model is preliminary and approximate until test data is forthcoming from the CoCI and FPI, this still is a
tight performance requirement, especially given the very large piston errors that must be accurately resolved at the
same time. Nonetheless, it is within the expected performance capabilities of the instruments.

Varying the ACF actuation noise affects the actual WF error, but not the estimation error, again as a consequence of our
preliminary sensing error model, which does not reduce sensing accuracy even with large segment piston errors.
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Reducing the ACF actuation error from 1 urad of tilt and 1 um of piston to a tenth of those values would permit
simultaneous phasing of the FP and CoC light paths and a reduction in the metrology dynamic range requirement.

Fig. 8. Monte Carlo results showing WF and WF estimation performance as a function of ACF piston drift sigmas.

CONCLUSION

The OSE provides a versatile and powerful method for deducing the underlying optical state of a telescope using
diverse wavefront and other data. Our analysis of the JWST sub-sampled aperture testing demonstrated OSE operation
and feasibility at a simplified level. Further work is underway to improve the detail of the models, to further develop the
OSE for Plum Brook testing, and to refine the testing procedures and requirements. 

Fig. 9. Monte Carlo results showing WF and WF estimation performance as a function of WF measurement error (left plot) and ACF 
actuator error (right plot).
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