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Abstract: This talk describes a new concept for visible direct detection of Earth like
extrasolar planets using a nulling coronagraph instrument behind a 4m telescope in space. In
the baseline design, a 4 beam nulling interferometer is synthesized from the telescope pupil,
producing a very deep 04 null which is then filtered by a coherent array of single mode fibers
to suppress the residual scattered light. With perfect optics, the stellar leakage is less than 10-!1
of the starlight at the location of the planet. With diffraction limited telescope optics
(lambda/20) ,suppression of the starlight to ~1e-10 is possible. The concept is described along
with the key advantages over more traditional approaches such as apodized aperture
telescopes and Lyot type coronagraphs.
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CCD — Transmission Pattern of Nuller

On the sky. (Star is at the center)

*When the light from two pupils are combined, the output can be imaged.
*The image is an Airy function with diameter 2.441/D where D is the telescope diameter.
*But the intensity of that image is modulated by the fringe pattern (on the sky) where b is
the baseline between the pupils.
«if the star is at a null, the star’s image has 0 intensity. If the planet is at the peak,
the planet’s light is unattenuated.
A nulling interferometer that works with a single aperture telescope is different than one
that combines light from 2+ telescopes
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Star and planet (ordinary but ideal telescope)
T T T

+ A nulling interfer

Interferometer to a Coronagraph

A modest sized aperture telescope can
theoretically resolve an extra-solar planet

— Jupiters at 10 pc » > 0.15m (A=0.75um)

— Earths at 10 pc 5> 0.75S m
The major technical issue is overcoming the
contrast between star and planet (10-°-10-19)
Conventional coronagraphs need to perform
detection at 3" Airy ring or greater to
suppress the contrast ratio
A Sun at 10pc is 1 mas in diameter. Total
leakage because of the nuller is < 10 (Not
yet considered for coronagraphic imaging).
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JPL Critical Comparison of a Visible Nulling Nuller
Interferometer to a Coronagraph

Attribute

Coronagraph

Nulling Interferometer

Telescope Design

Imaging mode

Beam Compression
Cassegrain Configuration
Acceptable

Telescope Primary Mirror

‘Hubble’ (A/80 rms) or better
minimum power in midspatial
frequencies

Diffraction Limited (A/20 rms OK)

Configuration

Unobscured configuration Required

Cassegrain acceptable, Unobscured
configuration acceptable

Diffraction Control

Diffraction Suppression Technique

Occulter and Lyot M ask:
Localization, Size, Apodization
critical

0! null required in nulling
interferometer, O (A) Path length
control for nulling and to suppress
stellar leakage

Pass band

na

Dispersion correction critical for
wide band nulling

Diffraction Suppression

3 Airy Rings (107),
4 Airy Rings (107'%)

2 Airy Rings (1077

Scattered Light Control

Wavefront Sensor

0A) sensitivity to drive deformable
mirror to suppress mid-
spatial frequency errors

(~1300s for m, = S star)

(~80s for my, = S star)

Pointing and Tracking

~1mas

~1lmas

Deformable Mirror

A resolution over O(4000) actuators,
amplitude and phase control

A resolution over O(3000) actuators,
amplitude and phase control, tip/tilt
and piston control

Spatial Filter Array

na

0(300-1000) Diffraction Limited
Coherent Array Required (A/10
rms)

Demonstrated Scattered Light
Supression

>10° per Airy spot

7x10”° sustained per Airy spot
6x107'" transient per Airy spot
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i system with 1.5m aperture.
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VE 4m aperture. The brightest
i emissions are red.
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Simulations of observed planet fluxes compared to the PSF of the stellar leak as a
function of the planet distance. The planet flux densities are assumed to be that for
Jupiter size and given in units of stellar flux. Null depth of 10-7 was assumed, and the
planet fluxes are averaged over all orientations of the null pattern.
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JPL Visible Nulling System Concept

Beam with Lenslet and fiber-

X and Y shear,  optic array spatial

04 null output filter
Image plane
(real 1image)

Y shear ~(64 X 64)
MMZ
Diffraction limited
imaging system (A/10) :’
X 64 Null in
Telescope Pupil Overlap
i < Pupil A Area

Baseline is V2 x shear
Single Mode Fiber array enables:
10- suppression achieved with 1077 nuller and 100 lenslets
10-1° suppression achieved with 10-7 nuller and 1000 lenslets
Turning/Rotation Multiple sub-apertures make the detection less susceptible to Exo-

Mirrors Zodiacal Dust
Residual background is incoherent with planet image

Preserves field of view
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Dispersive
*Single pupil input . . Components
u
*Preserves pupil orientation
and polarization
*Pupil shear adjustable—

. . T
variable null baseline Null output Variable
*Dielectric plates provide < delay
achromatic null

Symmetric
Beam
Splitters
Dispersive e
Components Variable shear, s <>

For Achromatic
Null
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e First Laboratory Results--White
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dataset 11

*Laser diode source ~1nm bw

Intensity matched to 0.1~0.2%
*Polarization aligned

- *Small dither imposed, sync’d with scope

i | display. Dither signal demodulated by “eye”
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-+ +OPD control by hand on pzt voltage knob.
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*Best transient null 6e-7, 40msec *Sustained null, Average leakage

sampling 7.6e-6
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In a visible TPF based on a nulling
interferometer

i Light from Nuller I

WW For Earth Detection:

lenslet  Fiber array has ~ 1000 fibers
AVAVZ Tl

Final image plane has a field of view ~1000 airy
Caterent spots (~30x30)
Fiber
array Average null of 1e-7 means that 1e-7 light
spread
NN over 1000 airy spots, or 1e-10 scattered light
T T — per airy spot.
N~ Final . . . .
i Nulling requirement (Vis TPF/Earth).ls
GH5tTE le-7 for Q=1, planet flux = scattered light flux

3e-7 for Q=0.3

CCD Requirement for Jupiter Imager ~10~100x easier



JE!‘ Single Mode Fiber Array Design and

Characterization

+  Commercial (preliminary) fiber array results == =%
— Irregular gaps between fibers
* Machine tolerance on metal housing issue
— Useful for development of:

* lens array to fiber alignment
« array characterization procedures

* Next Generation Array Design

Use large mode field diameter Photonlc Crystal
Fiber (PCF) to relax alignment error requirement

Use V-groove type fiber array construction for
flexible fiber and lenslet spacing or custom self
assembly fixture >

Custom lens array with focal plane at substrate
* Precision mapping of lenslet to fiber positions

—

f

« Assemble Using index matching bonding material Lens Array
to relax fiber array polishing requirement

Index \
Matching

Bonding | ens Array
Material
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Large area detector.
A ;
Iris placed at

=f 4 Zygo’s imaging '

Lens Fiber Rl itor
‘ Arrai Array
2 —:I:—: RS232
Relay
e i Beam e
Zygo /V Expander/ |:|:|
50% transmission Compressor | | O
Pellicle
Beam PI Hexalign 6-axis Stage Controller
Splitter Stage

-Zygo aligns all surfaces to be parallel and aligns fiber array on focal plane
-Detector and 6-axis stage controller aligns lateral positions of lens lenslets

to fibers
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SIS £yg0 measurement for 16 lenses in a 7 x 7 area
(i.e., every other lens was measured in this area)
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- Each data point was the average of 5 measurements.

-The error bar is given by the standard deviation of the 5
measurements
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- A/8 rms wavefront error over
 ~16 contiguous subapertures

 Coupled image from (approximate)
area of phase measurement
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* Visible Nulling Interferometer Summary

— Achieved sustained null of 7x10-%, and transient null of 6x10-’

* with a 1000 fiber bundle, implies scattered light in Visible TPF
would be 7x10-° and 6x10-1° per Airy spot, respectively.

— Closed-loop metrology systems under integration

* Only a factor of 2~6 away from what is needed
in a visible TPK with a 4m primary, to detect
Earths around solar like stars at 10pc.

* Single Mode Fiber Array Summary
— Lenslet array center-to-center spacing measured to +1.33um
* Repeatability is = 0.22 pm
— In process to build 20 SMF array with PCF’s

* 5x decrease in position tolerance on lenslet array and alignment
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