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Abstract 
A key enabling technology that leads to greater spacecraft autonomy is the capability to 
autonomously and optimally slew the spacecraft from and to different attitudes while 
operating under a number of celestial and dynamic constraints. The task of finding an 
attitude trajectory that meets all the constraints is a formidable one, in p articular for 
orbiting or fly-by spacecraft where the constraints and initial and final conditions are of 
time-varying nature. This paper presents an approach for attitude path planning that 
makes full use of a priori constraint knowledge and is computationally tractable enough 
to be executed on-board a spacecraft. The approach is based on incorporating the 
constraints into a cost function and using a Genetic Algorithm to iteratively search for 
and optimize the solution. This results in a directed random search that explores a large 
part of the solution space while maintaining the knowledge of good solutions from 
iteration to iteration. A solution obtained this way may be used 'as is' or as an initial 
solution to initialize additional deterministic optimization algorithms. A number of 
example simulations are presented including the case examples of a generic Europa 
Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are 
typically on the order of minutes, thus demonstrating the viability of the presented 
approach. The results are applicable to all future deep space missions where greater 
spacecraft autonomy is required. In addition, onboard autonomous attitude planning 
greatly facilitates navigation and science observation planning, benefiting thus all 
missions to planet Earth as well. 

1. Introduction 

1.1. The Nature of the Problem 
When planning a spacecraft slew maneuver, great care has to be taken in order to protect 
sensitive science or stellar reference (Le. star tracker) instruments from direct exposure to 
the sun and other bright bodies, as well as to meet a variety of other requirements during 
the spacecraft turn. The types of constraints typically encountered are [2]: 

geometric constraints: 
angular separation between body vector x and celestial vector y shall never be less 
than 6 (e.g. star tracker, science instrument boresight) 
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n between body vector x and celestial vector y shall never be less 
riod greater than T (e.g. power, thermal constraints) 

tes and accelerations shall be smaller than iBm, and aman, 
ited star tracking capability or control authority) 

and timed constraints, the position o e sun and other bright 
e attitude maneuver 

craft in inter-planetary cruise, the positions of the sun and 
normally be assumed as time-fixed for the duration of the 

the spacecraft have to be included 

onsequently, the geometric an 
in nature, Similarly, the boundary conditions, i.e. the initial 
are most likely not a function of time. On the other hand, 
or on a flyby trajectory, the geometric and timed constrai 
since the position of the sun and other bright bodies are co 
to the spacecraft fixed inertial coordinate frame, as the s 
trajectory. In addition, the initial and final attitudes of 
most likely time-dependent. 

Figure 1 shows the different types of constraints drawn on 
orientation is inertially fixed The spacecraft is at the center of 
trajectory (i.e. the trajectory of one of its body vectors 
varying and time-fixed constraints. 

Time-varying, 
gcometric 

Attitude 

Timed 
constraint 

'/ Time-fixed. 
geometric initial 

Attitude- Sphere constraint 
Celestial 

Figure 1: Types of Constraints Drawn on a Celestial Sphere 

Determining a constraint free attitude maneuver is closely related to the task of 
navigating a robot in the presence of moving obstacles and robot dynamics. The latter is 
usually referred to as kinodynamicplanning, and has been the object of considerable 
interest in the recent past. Consequently, concepts developed for autonomous robot 
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motion planning are directly applicable to the spacecraft attitude maneuver planning 
problem. However, even the simple problem of navigating a kinematic robot in a known 
environment with polyhedral obstacles has been proven to be computationally hard [3,4]. 
Even though complete$ algorithms are available, these cannot be used for real-time path 
planning in many real-world applications [3]. When the dynamics of the vehicle are also 
considered, there is strong evidence that the computational complexity of a complete 
algorithm will grow exponentially fast in the number of dimensions of the state space. 

Consequently, determining an attitude trajectory that meets all the time-varying 
constraints is a formidable task. Because of this difficulty, attitude maneuver 
determination has traditionally been done on the ground, with only a few spacecraft 
partially addressing this task in flight. 

The Topex Autonomous Maneuver Experiment (TAME) was a first step in implementing 
an autonomous attitude planner for an earth orbiting spacecraft [3]. The TAME 
algorithms, however, constituted an extension of algorithms that were originally 
formulated for the simple case of an interplanetary scenario where celestial constraints 
arefuced in time. The algorithms were based on a simple and undirected trial-and-error 
search with no guarantee whatsoever that a feasible solution is approached. While the 
TAME implementation was feasible and reasonable for this particular application, it 
didn't incorporate the time varying nature of the problem per se and therefore lacked the 
computational efficiency and scalability necessary to attack more complex problems. 

The Cassini spacecraft uses a constraint monitor (CM) [4] to autonomously check the 
commanded attitude trajectory for any constraint violation. Typically, the commanded 
attitude maneuver is first carefully designed on the ground before it is up-linked to the 
spacecraft. If a violation is nevertheless detected, a constraint avoidance function is 
invoked that computes an alternate attitude trajectory. The algorithm hereby commands 
the spacecraft to 'circumnavigate' the violated constraint. However, due to its short 
replanning time-horizon, the algorithm has no knowledge of whether any other 
constraints are being violated along its replanned trajectory. While the CM has been 
shown to successfully perform in most cases, it does not incorporate the time-varying 
constraints into the actual re-planning task proactively, and thus lacks computational 
efficiency and may expend a large amount of fuel before achieving the goal attitude. 
Similarly, the Remote Agent Experiment on the DS-1 spacecraft [l] used a simple 
attitude commander with no constraints avoidance planning capability and a Cassini-type 
Constraint Monitor to autonomously turn the spacecraft, and thus did not address the 
complexity of time-varying scenarios. 

While the search for the optimal solution is an inherent part of maneuver planning, it is 
not the primary purpose in the current context. As stated above, complete algorithms (Le. 
algorithms that are guaranteed to find the optimal solution whenever one exists or noti@ 
otherwise) may exist, but these cannot be used for real-time path planning since their 

A complete algorithm is guaranteed to find a solution whenever one exists, and otherwise to notify that 
there exists none. 
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execution time typically is of exponential order. Thus, in order to implement an on-board 
attitude planning capability, the notion of completeness has to be abandoned. 
Consequently, several heuristic methods have been developed. Some of the more 
impressive results have been obtained using potential field methods [4,7]. Such methods 
are attractive, since the heuristic potential field function guiding the search for a path can 
be easily adapted to the specific problem to be solved. However, the main disadvantage 
of this class of planners is the presence of local minima in the potential field which may 
prevent the algorithm from reaching the desired goal attitude. Computing potential fields 
with no local minima (so-called navigation functions) is practically intractable, except for 
trivial examples. Other global optimization techniques have been applied, but the curse of 
dimensionality in non-convex optimization always leads to a computational complexity 
that prevents the practical implementation of deterministic planners for non-trivial 
applications. 

1.2. Proposed Approach for EO Attitude Planner 

For the implementation discussed in this paper, a different approach has been considered. 
Unlike other approaches, where optimality of the solution is emphasized, the current 
approach adopts the desire to obtain a feasible solution in a reasonable amount time as its 
driving consideration. To this end, the approach is based on the following two strategies: 

These strategies are explained next. 

Trade-off of optimality with computational complexity 
Use of randomized search techniques 

Optimality versus Complexity Trade-off 

Optimality is traded with computational complexity: that is, a number of simplific 
are introduced to reduce the problem to be computationally tractable at the expe 
potentially obtaining a sub-optimal solution. Simplifying steps may include: 

While the maneuver planning problem should be simplified to the gre 
possible, care has to be taken to maintain the validity of the model and consequently of 
the solutions found. 

Omission of non-relevant spacecraft dynamics 
'Customization' of the problem: e.g. by defining a limited, convex attitude 
space and/or a limited set of possible attitude turns' 
Over-constraining the problem to account for uncertainties 

Randomized Search Techniques 
In the current approach, randomized search techniques are used to search for and, if 
found, optimize attitude maneuver solution. The notion of randomness as a part of the 
maneuver planning search strategy is hereby introduced. A number of path planners 

' There is a trade-off between up-front customization of the attitude maneuver planning problem and the 
level of flexibility maintained. 
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relying on random search or probabilistic methods have been developed, in recent years. 
They include Rapidly Exploring Random Trees [8] and Probabilistic Roadmap Planners 
[9]. More recently, a Hybrid Control Architecture [lo] has been developed that proved to 
be very efficient. However, for this study, a random search based path planning method 
relying on a Genetic Algorithm (GA) was chosen. The GA based approached has a 
number of beneficial attributes making it uniquely suited for the path planning 
application: 

A GA allows for a directed random search of a large solution space. It utilizes a 
'survival of the fittest strategy' to search in the vicinity of good solutions for better 
ones. At the same time, randomly induced 'mutations' ensure that a large solution 
space is searched. 
GAS have been shown to perform successfully in many real-world applications 
GAS are easy and fast to implement e.g. by using available COTS toolboxes. 
GAS are highly parallelizable. While the current implementation is executed on a 
standard CPU in a sequential manner, future implementation are likely to rely on 
dedicated or application specific highly parallel processors 
GA are well suited for discrete events such as thruster firings. 

GAS have been previously studied for the problem of Flight Path Optimization for Mars 
Precision Landing [ 1 13. However, for the latter application, the GA was used as an off- 
line optimization tool and its execution time required usually tens of hours. 

To apply the GA based approach in the current context, the problem at hand is first 
converted from a constraint into an unconstraint optimization problem. This is achieved 
e.g. by incorporating the attitude maneuver constraints into a cost function that 
subsequently is minimized using the GA based search algorithm. The GA based approach 
is outlined in the next section in more detail. 

Finally, it is important to note that a feasible solution obtained this way may be used 'as 
is' or, if further optimization is desired, as an initial solution for additional deterministic 
or random optimization algorithms. 

Section 2 discusses the Genetic Algorithm (GA) based implementation pursued in this 
study in more detail. Section 3 examines a number of case examples and evaluates certain 
characteristics of the GA approach. Section 4, finally, summarizes the assessment and 
provides conclusions. 

2. Implementation of a GA Based Autonomous Attitude Maneuver 

This section discusses the implementation of the Genetic Algorithm based Autonomous 
Attitude Maneuver Planner. The underlying assumptions are discussed first. Next, the 
cost function that is to be minimized is defined. The cost function penalizes any 
constraint violations and, consequently, turns the constraint into an unconstraint 
optimization problem. Next, the encoding of the free parameters, which define the 

Planner 
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dimensions of the search space is explained. Last, the basic functioning of a Genetic 
Algorithm is shortly explained. 

2.1. Simplifications and Assumptions 
The following assumptions and simplifications are being made for this study: 

Instantaneous turn rate changes are assumed. That is, the time to accelerate the 
spacecraft to its maximum allowable turn rate is much smaller than the spacecraft 
coasting time for a typical turn maneuver (tact << tmaneuver). As a consequence, 
spacecraft dynamics are neglected and only spacecraft kinematics are considered. 
This simplification eliminates the need to integrate the spacecraft dynamic equations 
of motions and reduces computationally complexity. Instead, the spacecraft 
kinematics only are propagated forward. This assumption is valid for most of today's 
spacecraft that are equipped with a reaction control system (RCS). 

Fixed initial and final attitudes (ai, Of), as well as a fixed initial time ti are assumed. 
Only the final time tf is assumed to be free. However, the concepts developed in this 
study can easily be extended to include free initial and final attitudes and free initial 
time. 

The planning problem is constraint to a maneuver that is composed of two slews. This 
simplification reduces the search space and thus computational complexity. However, 
the concepts developed in this study can easily be extended to multi-turn maneuver 
with three, four and more turns.  

A time-parameterized ephemeris model of celestial objects is assumed to be available. 
That is, spacecraft-to-sun vector and all relevant spacecraft-to-celestial object vectors 
are assumed to be known as a function of time. In particular, to simplify constraint 
evaluation, it is assumed that the motion of celestial constraint vectors can be 
approximated by instantaneous turn rates that are valid for the duration of a typical 
spacecraft turn. In most cases, the turn rates of celestial constraints are only 
significant for planetary bodies in close vicinity to the spacecraft, where the celestial 
constraints changes its direction during the spacecraft slew. For spacecraft in 
interplanetary cruise the turn rate of celestial constraint vectors is typically negligible. 

2.2. Cost Function 
The degree that a given candidate attitude maneuver satisfies the different constraints is 
measured by a cost function. The cost function is composed of four components each 
contributing to the overall cost of a given candidate solution. The components are a) cost 
due to the violation of geometric constraints, b) cost due to the violation of timed 
constraints, c) fuel cost and d) maneuver time cost, These components are explained in 
subsequent sections. 

To evaluate the cost function, define the vector [o, At] to describe a particular spacecraft 
slew maneuver. The direction and magnitude of o define the rotation axis and the turn 
rate, respectively, and the time interval At the duration of the spacecraft slew. A 



particular candidate attitude maneuver is based on two slews and is thus defined by a pair 
[ol, At,] and [a,, At,]. The first slew rotates the spacecraft from its given initial attitude 
63, (at time to) to an intermediate attitude 63intem (at time tint- = to + Atl) and the second 
slew rotates it to its final attitude 8f (at time tf = tintem + At,). 

2.2.1. Geometric Constraints 

A particular spacecraft slew [a, At] is penalized if it causes the angular separation 
between a protected boresight and a celestial object to be less than a minimum required 
separation angle. Thus, the j-th body vector bj and the i-th celestial vector Ci together 
define a pair (bj , Ci) of constraint vectors whose separation angle $ij(t) has to be larger 
than the required minimum separation angle Qj min throughout the slew. If $ij(t) (0 < t < 
At) is smaller than Q, min, the penalty is calculated based on the smallest angular distance 
encountered during the slew. In instances where the minimum angular separation angle is 
either at the beginning (t = 0) or at the end (t = At) of the slew, the minimum angular 
distance is set to the angular distance at the end of the slew. Hence, the minimum angular 
distance @; between a constraint pair (bj , ci) for a given slew maneuver [a, At] is 
defined as 

f"in$ij(t) if 3 

@ij(At) else 
4; =$;(Ci,y ,bj,a,At)={od'At 

where vi denotes any instantaneous rotation rate of the celestial vector Ci on the celestial 
sphere around the spacecraft. In this expression, bj and Ci are expressed in an inertially 
fixed reference frame and correspond to the body and celestial vectors at the beginning of 
the slew. 

For the inter-planetary case, the constraint pair (bj , Ci) is time-fixed (Le. vi = 0) and 4; 
can be computed in closed-form solution This allows for a computationally efficient 
evaluation. The algorithm to determine the closest approach angle for the time-fixed case 
involves solving the First Paden-Kahen Subproblem. For the more general, time-varying 
case (Le. vi z 0), experienced e.g. in planetary orbits, t& has to be calculated through an 
iterative search. The algorithm to determine the closest approach angle for this case 
irequires solving a function minimization. Due to its iterative nature, the algorithm 
requires more execution time than the one for the time fixed case. These algorithms are 
beyond the scope of this paper. 

In order to combine the cost of different geometric constraints (as well as of other types 
of constraints) into a single total cost, each contribution has first to be normalized ( or 
weighted). For a constraint pair (bj , Ci) with a required minimum angular separation 
Qij-min or larger and an actual minimum angular distance $;, the cost contribution is 
normalized by a weighting function FI given by: 
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That is, if the minimum angular distance $:j is equal to or larger than Qij - min, no cost is 
incurred. Otherwise, a logarithmic cost is applied. The weighting h c t i o n  F1 is shown in 
Figure 7(a). Finally, for a two-slew maneuver, the total cost CGC due to geometric 
constraints violations is given by the sum of the cost contributions of all applicable 
constraint pairs (bj , Ci) for both slews, hence 

2 5 -  

I 

8 2 -  

1 s -  

1 -  

0 5 -  

#celest.#bore- 

slew-I i-1 j-1 
(i ,j) y e  

constraint pair 

Note that not all combination of boresight and constraint vectors necessarily constitute a 
constraint pair. 

Geometric Constraints Weighting Function - .  
4 

Timed Constraints Weighting Function 
18  7 ,  

(a) (b) 
Figure 2: Weighting Functions for (a) Geometric Constraints (b) Timed Constraints 

2.2.2. Timed Constraints 

Timed constraints require the angular separation 4ij(t) between body vector bj and 
celestial vector Ci not to be less than Qij-min for a time period greater than Tij-max. In order 
to enforce this constraint, a candidate maneuver solution incurs a cost if it causes a 
protected body vector bj to stay longer in the 'forbidden cone' of half angle Qij min around 
the celestial vector ci. Slews that cause bj to be in the forbidden cone for less than Tma, or 
not to cross the cone at all do not incur any cost. Hence, define a function Tij( ) for the 
time that bj spends in the forbidden cone as 
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(4) 
time interval1 forwhich +ij(t) <@ij-min if 3 -i 0 else 

Tij = Tij( C i , ~ i  , bj,O, At, @ij- min) - 

where vi denotes any instantaneous rotation rate of the celestial vector Ci on the celestial 
sphere around the spacecraft. bj and Ci are expressed in an inertially fixed reference fiame 
and correspond to the body and celestial vectors at the beginning of the slew. 

As in the case for geometric constraints, for the interplanetary case where bj and Ci are 
time-fixed, Tij can be computed in closed-form solution allowing for a efficient 
evaluation. The algorithm to determine the constraint violation time for the time-fixed 
case involves solving the Second Paden-Kahen Subproblem and is beyond the scope of 
this paper. For the more general time-varying case, Tij has to be calculated by iterative 
search. The algorithm for the time-varying case was not implemented for this research 
but can easily be adapted from the time-varying geometric constraints. 

The weighting function F2 is chosen as 

and is shown in Figure 7(b). If Tij is larger than Tij max the cost increases exponentially, 
while for Tij < Tij m a  no cost is incurred. Finally, for a two-slew maneuver, the total cost 
CTC due to timed Eonstraint violations is given by the sum of the cost contributions of all 
applicable constraint pairs (bj , Ci) for both slews, hence 

#celest.#bore- 

slew-1 i-1 j-1 
( i d  are 

constraint pair 

Note that in order to simplify this implementation, each constraint pair is considered and 
penalized separately. However, for e.g. a radiator boresight to be protected in the space 
environment, the total constraint violation time of all applicable celestial constraints 
together may have to be considered instead. Similarly, the time a boresight vector spends 
outside any constraints may be considered as a "cool-off time" and may account against 
the time spent within the constraints. 

2.2.3. Fuel, Maximum Turn Rate and Total Maneuver Time . 

Spacecraft turn rate in- or decreases are related to the amount of time thrusters (with a 
given thrust) fire. The firing time, in turn, determines the amount of fuel expended. 
Penalizing spacecraft turn rate sets thus an upper bound on the fuel usage for a particular 
maneuver. 
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In addition, penalizing spacecraft turn rate (or fuel) leads to smaller turn rates and thus 
longer maneuver durations. If, as in the current case, total maneuver time is penalized 
too, the search for solution is guided by set of competing criteria and a trade-off between 
maneuver turn rate (fuel) and maneuver time has to be found. 

In order to focus the search on maneuver solutions that are primarily free of constraint 
violation, the importance of fuel and time optimality is somewhat de-emphasized.2 This 
is accomplished by choosing an acceptable per-axis turn rate and turn duration, specified 
by Wmax and Tmax, within which no penalty is incurred. However, a maneuver solution 
that exceeded Wmax and Tmax is penalized as shown below. 

Given a slew maneuver o and a maximum allowable per-axis turn rate Omax (assumed 
equal for all axes), the weighting function F3 for o = [WI, 0 2 ,  0 3 1  is given as 

The weighting function is similar in form to the one shown in Figure 7(b). For a 
maneuver solution consisting of [ol, At11 and [o2, At21 the contributions of both slews 
have to be added. For simplicity, it is hereby assumed that the spacecraft comes to a rest 
at the intermediate attitude between the two slew maneuvers. Hence, the total turn rate 
related cost is given by 

(8) 
2 

Fuel x F 3  (Oslew omax) 
slew-1 

The total maneuver time is 

and the associated cost and weighting function are defined as 

The weighting function is similar in form to the one shown in Figure 7(b). For this study, 
the maximum allowable turn rate omax, is chosen to be 0.1 deg/sec per axis as specified 
by EO AACS requirements [13]. This is driven by the requirement to keep the star 
tracker in lock during a turn. Tmax is arbitrarily chosen to be 2700 seconds allowing e.g. 
for a full 180 deg and subsequent 90 deg turn without incurring any penalty. 

* 1.e. a solution with a slight geometric constraint violation but a better fuel performance within the 
allowable range is not rated better than a solution with no geometric constraint violation and a worse, but 
still allowable, fuel performance. 
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2.2.4. Total Cost 
The total cost of a particular maneuver solution [ol, At11 and [a, At21 is thus given as 

2.3. Encoding 
In order to apply a Genetic Algorithm (GA), a candidate maneuver solution has to be 
encoded into a chromosome representation. For the application described in this study, 
the chromosomes are encoded as a single-level binary string using a traditional Gray 
binary encoding. The use of Gray coding has been advocated as a method to overcome 
the hidden representational bias in conventional binary representation, since for Gray 
codes, the Hamming distance between adjacent values is constant [14]. As outlined in 
previous sections, the following parameters govern the search for a feasible maneuver 
solution and therefore influence the encoding: 

Two-slew turn: 1 0 1 ,  At11 and [wz, At21 
Fixed initial time to 
Free final time t f=  At1 + At2 + to 
Fixed initial and final attitude: e o ,  ef 

where to is assumed to be zero throughout this study. 

Figure 8(a) shows the corresponding encoding. As shown in the figure, the only free 
parameters defining the entire maneuver are 01, At1 and At2. Starting from a fixed attitude 
e,, the slew [OI, At11 defines an intermediate attitude 8in t -  achieved at time tint-. With 
a given intermediate and final attitude, and the free slew time At2, the rotation vector 0 2  

can be calculated using 

where q2, qf, qintem denote the quaternion vectors corresponding to the respective attitude 
rotations, 0 denotes quaternion multiplication, and * denotes quaternion transpose. The 
determination of 02 from 42 is then straightforward. Since 0 2  is obtained indirectly, it 
might exceed the maximum allowable turn rate omax per axis. If this is the case, the 
magnitude of 0 2  has to be adjusted resulting in a modified At2. 

A 6-bit resolution, covering a parameter interval of [0,0.1] deg/sec for the per-axis turn 
rate, and a 8-bit resolution for a slew time range of [0, 18001 seconds seems appropriate 
for this application. This leads to a chromosome length of 34 bit for a particular 
maneuver solution. 
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6 6 6 8 8 
[ I O 1 0 1  1 I 110001 I 01 101 1 I 01 1 I01 10 I 11001001] I 3 4  bits 

01, W I Y  W l /  At 1 At? 
(0. 0. I dcp] [O, 0.  I dcg] [ ( I .  ( I .  I dcg] [ ( I ,  IXO(I hCC] [ ( I ,  I X ( I 0  bCC] 

I /  I 

8 6 6 
[loo1 1001 I 10101 I I 110001 

to Wlx Wly 
10. 0.1 dcp] [ 0 ,  0.1 dcpj / 

6 8 8 6 
01 101 1 01 I101 10 I 11001001 I 110001] 48 bits 

WI/  At I At2 Xf 

[a,, 4 1  [a29  4 1  
to -[eo(t>l [%term, tinteml ____+ [Pf, nf, tfl 

initial att. interm. att. final att. 

(b) 
Figure 3: Encoding for (a) case examples (b) more general case 

Figure 8(b) shows an example encoding for a more general case, namely: 
Free initial time: to 
Initial attitude as a function of to: 
Fixed final pointing vector with free roll angle: 

8 0  = F@O) 
Pf, free xf 

In this case, additional 8-bit encoding for to (in the range of [0, 18001 seconds) and a 6-bit 
encoding for the free angle nf (range of [0 360 deg]), yield a total chromosome length of 
48 bits. As explained in the next section in greater detail, a larger chromosome length 
corresponds to a larger search space and thus increases search time. This case is not 
pursued any further. 

2.4. Genetic Algorithm 
This section gives a brief outline of the basic Genetic Algorithm (GA). A detailed 
account is beyond the scope of this study, but can be found in many textbook on GAS, 
such as [ 14,151. A GA consists of the following basic steps: 

1) [Start] Generate random population of n chromosomes (i.e randomly selected 
solutions for the problem) of length 1 (I = 34 bit). 
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2) [Fitness] Evaluate the fitness f(x) of each chromosome x in the population using a 
cost function and ranking criteria. 

3 .  [Stopping Criteria] Test whether stopping criteria is achieved? If yes: go to Step 6 
and return the best solution in the current population. If no, continue with Step 4. 

4. [New population] Create a new population by repeating the following steps until 
the new population is complete. 
4.1 [Selection] Select two parent chromosomes from the population according to 

their fitness (the higher the fitness, the higher the chance, Pselect, to be 
selected) 

4.2 [Crossover] With a crossover probability, P,,,,, crossover the parents to form 
a new offspring (children). If no crossover was performed, offspring is an 
exact copy of parents. 

4.3 [Mutation] With a mutation probability, PmUm, mutate new offspring at each 
locus (position in chromosome). 

4.4 [Accepting] Place new offspring in a new population 

5. [Loop] Go to step 2 

6. [Stop] 

A number of implementation issues have to be considered: 
The best solutions found so far are inserted into the new population, in order to avoid 
loosing them through the crossover and mutation operation (Elitism and Generation 
Gap). The number of chromosomes allowed to propagate is determined through the 
generation gap parameter. 

Stopping Criteria: In this implementation, the stopping criteria is composed of two 
conditions: maximum number of generations and maximum acceptable cost. If either 
the maximum number of generation or a preset maximum cost threshold is reached, 
the search will be terminated. Imposing a maximal number of generations is 
necessary in order to exit the search after a given time. The appropriate maximum 
number of generations has to be determined such that, on the one hand, the search 
does not end prematurely (i.e while the cost is still decreasing from generation to 
generation), and, on the other hand, that it does not keep searching once no 
improvement in cost has been made over large number of generations. The latter 
conditions corresponds to a case where the algorithm found a local minimum. Rather 
then trying to escape from the local minimum, it may sometimes be more efficient to 
terminate the current search and start over using a new set of chromosomes. The 
second condition, maximum cost threshold, ensures that the search is not prolonged 
by looking for a degree of optimality that may be not achievable or may not be 
necessary. That is, in many instances, solutions with a (small, but) non-zero cost may 
still be acceptable. 
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3. Case Examples 
The GA has been implemented in MATLAB using the GA toolbox available from [14]. 
The toolbox is based on Matlab .m-files. The optimization was executed on a Sparc Ultra 
80 (450 Mhz Sun UltraSparc-I1 CPU) with 1 GB Memory that was shared with one other 
user. 

This section presents four case examples of the GA based attitude planner. Section 5.1 
presents the time-fixed case of Europa Orbiter during cruise to Jupiter. Section 5.2 shows 
a pre-fabricated (and rather pathological) time-fixed case to more heavily exercise the GA 
algorithm. Section 5.3 presents the time-varying example of EO in Europa Orbit (EO2). 
Finally, Section 5.4 presents a pre-fabricated, time-varying case of rather pathological 
nature to explore the limits of the algorithms for a time-varying case. To fully exercise 
the algorithm and gain more insight into its performance, the EO spacecraft constraint 
configuration is adapted to the respective case example and thus varies from example to 
examp~e.~ 

3.1. Europa Orbiter During Cruise 

3.1.1. Setup 

The following example discusses the attitude planning problem for EO during cruise 
phase about midway between Mars and Jupiter. A number of celestial constraints are 
assumed active during this phase, in particular Mars, Earth, Jupiter and foremost the Sun. 
The positions of the celestial objects (celestial vectors Ci) were computed with SOAP 
(Satellite Orbit Analysis Program) using the EO trajectory, current at the time of the 
study, for the date of June 1, 2004. Since the spacecraft is in interplanetary cruise, the 
celestial objects have no noticeable motion in the time interval typical for spacecraft 
turns, and, thus, the problem can be considered of time-fixed nature. 

A number of spacecraft protected boresights (body vectors bj) have been assumed for this 
example. The body vectors bj, the celestial vectors Ci , the applicable constraint pairs as 
well as the constraint type are tabulated in Table 1, with the celestial constraint vector 
expressed in right ascension (RA) and declination (DEC). 

At the time this study was conducted, actual science instruments, thermal and other protected boresights 
have not been fully identified yet. All of the constraint configurations used in the case examples do not 
correspond to the constraint configuration of the actual Europa Orbiter mission. 

For extended bodies, the angular radius of celestial object is used. If the object is a point source only, a 
minimum abgular radius of 1 deg is assumed. 
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Table 1: Celestial and Body Constraints for Case 1 

- 
Chromosome Length I L 
Max. # of Generations I MAXGEN 

Each body and celestial vector form a constraint pair, as indicated in Table 1. The 
required separation angle is the sum of the angular radius of the celestial object and the 
field of view of the body constraint. The initial and final attitude quaternions for this 
example are given as: 

initial attitude: q i  = [0.5 -0.5 0.5 0.51 
final attitude: q f  = [0.419 0 -0.908 01 

#" 

34 bits 
50 

The case example is setup such that no single rotation can lead the spacecraft from its 
initial position to its final position without violating any constraints. Thus, the search 
algorithm is required to find a two-slew solution. The constraints in Table 1 and initial 
and final attitude quaternions are coded in an initialization file that is loaded at the 
beginning of the optimization. 

Generation Gap 
Crossover Probability 
Mutation Probability 
StoDDing Criteria 

Table 2 shows the Genetic Algorithm (GA) settings used for this example. The stopping 
criteria and the maximum number of generations were established based on a number of 
trial runs. The stopping criteria was further refined based on post-simulation evaluation. 
The Generation Gap and the Crossover and Mutation probabilities are recommended 
default values [ 141. 

GGAP 0.9 
Pcross 0.7 
Pmut 0.7IL 

Cost Function < 8 * 1 e-4 

Table 2: GA Settings for Case 1 

3. I .2. Results 
Figure 10 depicts the lowest cost achieved for a given generation over the course of the 
optimization. In the first generation, i.e. the generation that is randomly selected at the 
outset of the optimization, the best solution has a cost of approximately 2.6. After one 
generation, the cost decreased to 1.1. With the cost decreasing in a stepwise fashion, the 
stopping criteria is reached after 37 iterations (i.e. in the 38th generation). The 
optimization was executed several times. This particular run required 227 sec and 
represents a slower than usual convergence for this problem. 
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Figure 4: Lowest Cost versus Generation 

Figure 11 shows the maneuver solution drawn on a celestial sphere whose orientation is 
inertially fixed. The spacecraft is at the center of the sphere and the trajectory of the body 
vector constraint cones is shown. As can be seen, the spacecraft orients itself from its 
initial to its final attitude using a two-slew maneuver turn without a violation of any 
geometric constraints. The two slew maneuver solution is given by: 

01 = le-3 * [-0.9142 -0.4156 -0.69261 radsec 
At1 = 1349 sec 
02 = le-3 * [-1.681 0.0518 1.20041 radsec 
At2 = 904 sec 

The total turn time is 2253 seconds. 
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Maneuver Time: 0 Maneuver Time: 0 

(a) 

Maneuver Time: 2253 Maneuver Time: 2253 

(b) 
Figure 5: Case 1 Solution (a) Initial Attitude (b) Final Attitude 

3.2. A Pathological, Time-Fixed Case 
The purpose of this example is to exercise and demonstrate the GA based maneuver 
planner on a pathological (i.e. worst), time-fixed case. The following example is based on 
a pre-fabricated 'worst case' with limited, but known optimal solutions. 

3.2.1. Setup 
The case example is constructed such that two body constraints vectors (bl and b2) are 
"trapped" inside two "clusters" of celestial constraints (cl - c4 and c5 - c8). No single 
rotation leads the spacecraft from its initial position to its commanded final position 
without violating any constraints. Instead, only a limited range of two-slew maneuvers 
result in a trajectory free of constraint violations, as shown below. This example does not 
correspond to case a real spacecraft would encounter. Table 3 show the body and celestial 
constraints for this example with the celestial constraint vector expressed in right 
ascension (RA) and declination (DEC). Figure 13 shows the constraints drawn on an unit 
sphere around the spacecraft. 
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Table 3: Celestial and Body Constraints for Case 2 

Generation Gap 
Crossover Probability 
Mutation Probability 
Stopping Criteria 

The initial and final attitude quaternions for this example are given as: 
initial attitude: t i  = [0 0 0 13 
final attitude: q f  = [0 -0.9239 -0.3827 01 

GGAP 0.9 
Pcross 0.7 
Pmut 0.7fL 

Cost Function < 0.08 

The constraints in Table 3 and initial and final attitude quaternions are coded in an 
initialization file that is loaded at the beginning of the optimization. 

The optimization was run 500 times to obtain quantitative insights into how the algorithm 
performed in this case. Each run consisted of a different randomly selected initial 
population of 70 chromosomes that was optimized over 50 generations. The GA settings 
used for this test are given in Table 4. The stopping criteria was established based on a 
number of trial runs. 

Parameter Label Value 
# of Runs 
# of Chromosomes 
Chromosome Len th 34 bits 
Max. # of Generations MAXGEN 50 
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(a) @) 

Lowest Cost 
Figure 6: (a) Lowest Cost versus Generation for 500 Runs (b) Histogram of 

3.2.2. Results 
Figure 12(a) shows the lowest cost achieved for a given generation over the course of 50 
generations for all 500 runs. While all runs start out at different initial costs in the first 
generation, as expected from a randomly selected population, they all converge to one of 
four final costs. Three "local" minima with final costs of approximately 0.42-0.43, 0.53- 
0.54, and 0.62-0.63, and a final "global" minimum region between 0 and 0.13 are clearly 
observable in this Figure. Figure 13 shows the corresponding solutions. 
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different genetic material) is an inherent part of the GA based search process. For the 
current example, in 41 cases it took two runs to obtain an acceptable solution, in 5 cases 
three runs, and in 2 cases four runs. Thus, the worst case for this pathological example 
required the maneuver planner to re-initialize and search four times to find an acceptable 
solution. The average computation time per run on the Sparc Ultra 80 using non- 
optimized Matlab .m files was 3.8 minutes with a standard deviation of 2.2 minutes. 
Consequently, for this example, the worst case required computation time on the order of 
15 minutes. 

3.3. Europa Orbiter in Europa Orbit (EO’) 
The following example illustrates the attitude maneuver planning algorithm for EO 
during its mission in Europa orbit where some of the celestial constraint vectors are time- 
varying. Unlike the previous two, the following example demonstrates thus the behavior 
of the algorithm for a problem of time-varying nature. 

3.3.1. Setup 
The positions of the celestial objects (celestial vectors Ci) and their movement over time 
were computed with SOAP using the EO trajectory, current at the time of the study, for 
the date of September 22,2008. A number of celestial constraints are active, in particular 
Europa, Ganymede, Callisto, Io, Jupiter and the Sun. Only Europa has significant motion 
during the time interval of a typical spacecraft turn and is thus treated as a time-varying 
constraint. Its motion can be described by an angular rate vector. Jupiter and the other 
planets exhibit limited motion and can easily be converted into time-fixed constraints by 
purposely increasing their angular radius by half of the longitudinal motion encountered 
during the turn interval (for this case, most of the planetary motion is exhibited in the 
longitudinal direction). That is, a larger constraint cone encompassing the motion of the 
actual constraint is assumed during the solution search. This conversion results in a 
significant reduction of execution time since the time-fixed constraints can be evaluated 
in closed form as explained in the previous section. A reduced number of protected 
spacecraft boresights has been assumed for this example. The body and celestial 
constraints are tabulated in Table 5. 

Celestial Constraint Vector 
I J2000 Position Unit I Angular Radius 1 Name 1 Label - Vector (**) (* 

, Sun c l  RA= 113.8deg 0.05 deg 
I I DEC = 0.3 deg 

Jupiter I c2 I RA = 225.7 deg I 7.7 deg 
DEC = -1.7 deg 

DEC = 12.9 deg 

(actual 6.2 deg) 
Europa c3 RA = 299.4 deg 62.5 deg 

Callisto c4 RA = 87.3 deg 0.23 deg 
actual 0.1 de 

0.65 deg 
act. 0.37 de 

2.3 deg 
actual 0.1 

Body Constraint Vectors 
Name I Label I Position Vector(SC I Fieldofview [ 

DEC = 2.0 de 
RA = 231.4 deg 
DEC = -1.9 de 

i 

Angular Rate I Constraint Type 
Vector 

Time-fixed 

0.5671 * le-3. 
Converted to Time- 

~ ~~ 

Constraint Pair I Constraint Type 
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fixed) with 
20 deg c l  -c6 Geometric 

Radiator 1 b3 r0.707 0.707 01 20 deg cl  -c6 Geometric 

* 
** 

SRU bl [O 0 -11 

Table 5 Celestial and Body Constraints for Case 3 
Angular radius is increased to account for limited planetary motion during spacecraft turn. The true 
angular rate is indicated in parenthesis. 
For this case, most of the planetary motion is exhibited in the longitudinal direction. Table 5 
indicates thus right ascension in the middle and declination at the start of the tum interval. 

The required separation angle is the sum of the angular radius of the celestial object and 
the field of view of the body constraint. As in the previous cases, the following example 
is setup such that no single rotation can lead the spacecraft from its initial position to its 
final position without violating any constraints. Thus, the search algorithm is required to 
find a two-slew solution. The initial and final attitudes are fixed and given: 

initial attitude: q i  = [0.327 -0.627 0.327 0.6271 
final attitude: q f  = r0.653 -0.271 -0.653 -0.2711 

Table 6 shows the Genetic Algorithm (GA) settings used for this example. The stopping 
criteria and the maximum number of generations were established based on a number of 
trial runs. 

Parameter I Label I Value 
# of Chromosomes I NIND I 40 

34 bits 

3.3.2. Results 
Figure 14 depicts the lowest cost achieved for a given generation over the course of the 
optimization. In the first generation, i.e. the generation that is randomly selected at the 
outset of the optimization, the best solution has a cost of approximately 0.93. After 16 
generations, a zero cost solutions is found. This particular run required 230 sec and 
represents typical convergence for this problem. 
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Figure 8: Lowest Cost versus Generation 
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Figure 15 shows the maneuver solution drawn on a celestial sphere whose orientation is 
inertially fixed. The spacecraft is at the center of the sphere and the trajectory of the body 
vector constraint cones is shown. As can be seen, the constraint cone due to Europa is 
moving from its initial position on the western hemisphere counter-clockwise to the 
southern hemisphere. At the same time, the spacecraft orients itself from its initial to its 
final attitude using a two-slew maneuver turn without a violation of any geometric 
constraints. The two slew maneuver solution is given by: 

01 = le-3 * [1.0804 -0.8034 0.19391 radsec 
At1 = 1715 sec 
oz = le-3 * [0.9054 0.3925 1.43961 radsec 
At2 = 943 sec 

The total turn time is 2658 seconds. 
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Maneuver Time: 1 Maneuver Time: 1 

Maneuver Time: 2658 Maneuver Time: 2658 

(b) 
Figure 9: Case 3 Solution (a) Initial Attitude (b) Final Attitude 

3.4. A Pathological Time-Varying Case 
The following example is a pre-fabricated pathological case for time-varying constraint 
avoidance and serves to exercise and demonstrate the GA based maneuver planner. 

3.4.1. Setup 
For this case example, two body constraint vectors (b2 , b3) are initially positioned near 
the "North" and one (bl) at the ?3outh" pole. The three body constraints vectors have to 
cross the equator (from North to South and vice versa) where four rotating celestial 
constraints (cl - c4) effectively limit the passage to four moving "gates" (rotation about 
52000 z-axis). No single rotation leads the spacecraft from its initial position to its 
commanded final position without violating any constraints. Similar to the previous 
pathological case, this example does not correspond to case a real spacecraft would 
encounter. Table 7 show the body and celestial constraints for this example with the 
celestial constraint vector expressed in right ascension (RA) and declination (DEC) . 
Figure 17 shows the constraints drawn on an unit sphere around the spacecraft. 
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Celestial Constraint Vectors 
Name I Label I Position Vector (52000) I Angular I AngularRate I Constraint 

I I Radius* I Vector I Type 

Constr 2 

Constr 3 

Constr 4 

radsec 

radsec 

radsec 

c2 RA = 90, DEC = 0 20 deg O.l*pi/180*[0 0 13 Time-varying 

c3 RA = 180, DEC = 0 20 deg 0.1*pi/180*[0 0 11 Time-varying 

c4 RA = 270, DEC = 0 20 deg 0.1 *pi/l80*[0 0 11 Time-varying 
I 

The initial and final attitude quaternions for this example are given as: 
initial attitude: q i  = [0.7071 0 0 0.70711 
final attitude: q f  = [-0.7071 0 0 0.70711 

I I radsec I 

The optimization was run 250 times to obtain quantitative insights into how the algorithm 
performed in this case. Each run consisted of a different randomly selected initial 
population of 40 chromosomes that was optimized over 25 generations. The GA settings 
used for this test are given in Table 8. The number of chromosomes, maximum number 
of generations and the stopping criteria were established based on a number of trial runs. 

SRU 
Science 
Radiator 1 

Parameter Label Value 

34 bits 

fixed) with Type 
b l  [O -1 01 10 deg cl  -c4 Geometric 
b2 [O l o ]  10 deg c l  -c4 Geometric 
b3 [0.707 0.707 01 10 deg c l  -c4 Geometric 

Crossover Probability I Pcross I 0.7 
Mutation Probability I Pmut I 0.7/L 

I Stormine Criteria I I Cost Function < 0.0008 I 
4 

Table 8 GA Settings for Case Example 4 
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Figure 10: Lowest Cost versus Generation for 250 Runs 

3.4.2. Results 
Figure 16 shows the lowest cost achieved for a given generation over the course of 50 
generations for all 250 runs. While all runs start out at different initial costs in the first 
generation, as expected from a randomly selected population, they all reduce the cost as 
the iteration progresses. Unlike Example 2, where the solutions converged to three local 
minima and 1 global maximum, here the costs converge to a final range of 0-0.3. Post- 
simulation analysis revealed that solutions with a cost of up to 0.075 provided an 
acceptable degree of constraint avoidance. Figure 17 shows the ideal, zero-cost solution. 
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Maneuver Time: 1 

str 4 

Maneuver Time: 2062 

0.)) 
Figure 11: Case 4 Solution (a) Initial Attitude (b) Final Attitude 

The two slew maneuver solution for the ideal solution in Figure 2 1 (a) is given by: 
01 = le-3 * [1.1358 -1.4683 0.13851 radsec 
At1 = 1038 sec 
0 2  = le-3 * [1.3414 0.1445 1.53131 radsec 
At2 = 1024 sec 

The total turn time is 2062 seconds. 

Figure 18 shows a histogram of the best solutions for all 250 runs with the acceptance 
threshold at the 0.075 cost level indicated on the chart. As can be seen, the majority of 
runs generate an acceptable solution with costs less than or equal to 0.075.In 171 runs 
(i.e. 68.4 % of the runs) the algorithm found acceptable solutions. Besides the total 
number of runs with acceptable solutions, their distribution among the 250 runs has to be 
considered as well. This is important, since, in reality, an attitude planner on a spacecraft 
may initiate a new search using different initial chromosomes, once it hits a local 
minimum solution with unacceptable performance. For the current example, in 44 cases it 
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took two runs to obtain an acceptable solution, in 17 cases three runs. Thus, the worst 
case for this pathological example required the maneuver planner to re-initialize and 
search three times to find an acceptable solution. The average computation time per run 
on the Sparc Ultra 80 using non-optimized Matlab .m files was 8.3 minutes with a 
standard deviation of 5.8 minutes. Consequently, for this example, the worst case 
required computation time on the order of 25 minutes. 

The larger computation time for this example (as compared to Example 2) is expected 
since, for the time-varying case, the closest angular distance has to be determined using 
iterative search methods. These are more time-consuming than evaluating the closed- 
form solutions available for the time fixed-case. However, it is important to note that this 
case example constitutes a worst-case example that is rarely encountered, if at all, in a 
real mission environment. For this example, twelve time-varying constraint pairs (Le. 4 
moving celestial object x 3 spacecraft boresights) had to be evaluated while in an actual 
Europa orbit environment only one or two celestial bodies show significant motion. 
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Figure 12: Histogram of Lowest Cost 

4. Summary and Conclusions 
This study investigated the feasibility of an autonomous attitude planner for the Europa 
Orbiter. A number of previous and existing maneuver planning implementations were 
reviewed and a novel approach to the attitude maneuver planning was formulate 
relied on converting the constraint path planning problem into an unconstrai 
by incorporating the constraints into a cost function and using a Genetic AI 
random search technique to search for a feasible solution. Four examples ill 
application of this algorithm for time-fixed and time-varying constraint 
examples were chosen to represent worst-case scenarios not likely to be enc 
real mission. In all of the examples, feasible solutions were found with com 
in the order of minutes. 
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Based on the insights gained through this study, the following conclusions can be draw: 

Even a relatively simple GA based attitude planner provided acceptable solutions for 
a number of difficult cases. 

Computation times obtained were on the order of minutes for non-optimized code (.m 
files). Faster performance might be expected in a real-time system environment 
(depending on the time allocated). 

An On-board autonomous attitude planner is defmitely feasible, provided that 
optimality is traded with computational tractability (e.g. through 
simplifications and customization) 
the notion of 'completenessy is abandoned and the notion of 'randomness' is 
accepted (e.g. by using extensive simulations to gain confidence) 

An attitude planner in conjunction with a Cassini/DS-1 type constraint monitor 
greatly increases safe, efficient and autonomous attitude maneuver. planning 
capability. 

. A number of alternative attitude planner or optimization schemes are available and 
should be studied (e.g. [lo]). 

The capability of current GA based attitude planner can readily be increased by 
including: 

Free initial time 
Fixed final pointing 

Multi-slew turn maneuvers 
These extensions involve more degrees of freedom and require thus longer 

Spacecraft dynamics for Reaction Wheel Control Mode 

chromosomes or, equivalently, an optimization over a larger search space. 
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