
 1

When Management Gets Serious
About Managing Software 1

P. A. “Trisha” Jansma
Software Quality Improvement Project

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, CA 91109-8099
818-354-0647

Patti.A.Jansma@jpl.nasa.gov

1 IEEEAC paper #1025, Version 5, October 28, 2004

Abstract—In FY 2002, JPL launched a lab-wide software
quality improvement effort aimed at addressing the
challenges of developing, managing and acquiring software
in an engineering and scientific environment. The lab’s
senior management formed the Software Quality
Improvement (SQI) Project in order to establish an ongoing
operational program that results in the continuous,
measurable improvement of software quality at JPL. After
some study, the SQI Project identified several factors that
are critical for the successful and timely management and
implementation of software-intensive systems.

The initial focus of their efforts was the basic project
management of mission-critical software, based on the
CMMI® model. The areas of emphasis selected included
software project planning, software project monitor and
control, software acquisition management, software risk
management, software requirements management, software
quality assurance, software configuration management, and
software measurement and analysis. The SQI Project
developed a broad range of products, services, and training
to support managers and practitioners throughout the entire
software development life-cycle.

As products, services and training were developed, each one
needed to be systematically deployed. Hence, the SQI
Project developed a deployment process that includes four
aspects: infrastructure and operations, communication and
outreach, education and training, and consulting support. In
addition, the SQI Project took a very proactive approach to
organizational change management and customer
relationship management – both concepts and approaches
not traditionally invoked in an engineering environment.

This paper describes JPL’s approach to improving the
management of software. It discusses the various products,
services and training that were developed, describes the
deployment approach used, and concludes with several
“lessons learned” about changing how software is managed,
developed and acquired.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. SOFTWARE COMMUNITY 2
3. GENERAL APPROACH ... 2
4. DEPLOYMENT PROCESS.. 4
5. INFRASTRUCTURE AND OPERATIONS................... 4
6. COMMUNICATION AND OUTREACH...................... 4
7. EDUCATION AND TRAINING.................................. 5
8. PROJECT SUPPORT ... 5
9. LESSONS LEARNED ... 6
10. CONCLUSIONS... 7
11. ACKNOWLEDGEMENTS....................................... 7
REFERENCES... 8
BIOGRAPHY .. 8

1. INTRODUCTION

About JPL

The Jet Propulsion Laboratory (JPL), located in Pasadena,
California is a non-profit federally funded research and
development center (FFRDC) which is operated by the
California Institute of Technology (Caltech) under a
contract with the National Aeronautics and Space
Administration (NASA). JPL is part of the U.S. aerospace
industry, and is NASA’s lead center for robotic exploration
of the solar system. In addition to its work for NASA, JPL
conducts tasks for a variety of other federal agencies, such
as the Department of Defense, the Department of
Transportation, the Department of Energy, etc. JPL has
approximately 5500 employees: 4500 in the technical and
programmatic divisions and 1000 in the administrative
divisions. Its annual budget is approximately $1.4 billion.

Background

Motivated by some highly visible failures in which software
was implicated in mission loss (e.g., Mars ’98) and by a
NASA-wide software engineering initiative, JPL undertook

 2

a major software quality improvement effort. JPL senior
management formed the Software Quality Improvement
(SQI) Project in FY 2002 in order to establish an on-going
operational program that results in the continuous,
measurable improvement of software quality at JPL. The
SQI Project is chartered to provide education, training,
mentoring, and consulting for projects and practitioners in
order to enable and promote software best practices, and to
leverage JPL experience in software engineering in support
of major software projects, throughout the entire software
life-cycle.

The SQI Project itself consists of the following components:

1. SQI Project Management that manages the SQI Project

and all its activities, and communicates with JPL senior
management and with other external interfaces.

2. CMMI® Implementation Team that develops and
implements various CMMI® practices and conducts
appraisals against the CMMI® model.

3. Process and Product Definition Element that captures,
defines, and refines repeatable processes and a set of
engineering and management practices for project use

4. Measurement, Estimation and Analysis Element that
provides infrastructure for software estimation, costing
and measurement; and collects and analyzes measures
of development performance.

5. Deployment Element that promotes communication and
infuses practices into project use; provides education,
training and consulting for projects; and provides SQI
Project infrastructure.

The SQI Project was able to build on some previous process
improvement activities at JPL in the 1980’s and 1990’s,
including Total Quality Management (TQM), Process-
Based Management (PBM), ISO 9000 certification, and the
Software Resource Center (SORCE). However, they had to
deal with some “baggage” associated with these previous
initiatives as well.

2. SOFTWARE COMMUNITY

JPL’s employees are classified into 13 job families, and
each family has several disciplines and sub-disciplines.
While the majority of the JPL Software Community consists
of practitioners in the Information Systems and Computer
Science (IS&CS) job family, software managers are
categorized as either Line Management or Program/Project
Management. Also, personnel who are categorized as
Engineering and Technical would still be considered part of
the Software Community provided that at least 50% of their
work is software-intensive. Given this range of categories,
the Software Community at JPL consists of approximately
1200 to 1300 people.

SQI’s primary customers are members of JPL’s Software
Community, with an initial focus on mission-critical

software for spacecraft, instruments, and associated ground
systems. The customers can be further categorized into two
groups -- software management and software practitioners.
Software management includes Project Element Managers
(PEMs), Project Software Systems Engineers (PSSEs),
software managers, mission assurance managers (MAMs)
and Level I and II line managers and supervisors of
software-intensive organizations. Software practitioners
include cognizant engineers (Cog Es), software engineers,
software test engineers, software configuration management
(CM) engineers, and software quality assurance (SQA)
engineers.

Other customers include managers in JPL program and
project offices whose purview is broader than software, but
whose scope encompasses it as well. Usually these
managers have a hardware background and could benefit
from exposure to the fundamental concepts associated with
software management and planning. Hence, other
customers include program managers, project managers,
systems engineers, others with whom software personnel
interact regularly, and anyone whose decisions impact the
way software is developed at or acquired by JPL. Lastly, it
includes selected members of the Acquisition Division
involved with acquiring software or systems with embedded
software.

3. GENERAL APPROACH

The SQI Project identified several factors that are critical
for the successful and timely management and
implementation of software-intensive systems. The initial
focus of their efforts was the basic project management of
mission-critical software based on the CMMI® model. The
areas of emphasis selected included software project
planning, software project monitoring and control, software
acquisition management, software risk management,
software requirements management, software quality
assurance, software configuration management, and
software measurement and analysis. In the past two years,
they developed a broad range of products, services, and
training to support managers and practitioners throughout
the entire software development life-cycle. As products,
services and training were developed, each one needed to be
systematically deployed.

About the Capability Maturity Model Integration

The Capability Maturity Model Integration (CMMI®) is an
evaluation and appraisal model, developed by the Software
Engineering Institute (SEI) at Carnegie Mellon University,
which is used to evaluate the "maturity" of an organization's
processes [3], [17]. The CMMI® models build on, extend,
and integrate the best practices of the Capability Maturity
Model for Software (SW-CMM®), the Systems
Engineering Capability Maturity Model (SE-CMM®), and
the Integrated Product Development Capability Maturity

 3

Model (IPD-CMM®) [18]. The model is defined in terms of
Process Areas and Maturity Levels and has two
representations:

• Staged representation that organizes the process
areas by maturity level

• Continuous representation that organizes the
process areas by process categories and measures
capability level

Although CMMI® was developed to reduce the risk of
DOD software procurements, this model has become a
popular framework for process improvement in both
government and industry. Benefits of implementing
recommended practices include significant improvements in
software defects and consequent rework, cost and schedule
predictability, and productivity of the development team.
All the CMMI® process areas are shown by maturity level
in Table 1.

JPL is currently implementing the CMMI® in four
pathfinder software-intensive sections. The near-term goal
is to demonstrate CMMI® Maturity Level 2 compliance for
selected projects in these sections by the end of FY 2005.
JPL’s CMMI® target profile showing expected capability
level for each process area by fiscal year is shown in Figure
1. Progress will be assessed against the continuous
representation of the CMMI® model. Formal CMMI®
appraisals use the Standard CMMI® Appraisal Method for
Process Improvement called SCAMPI. Informal, Class B
appraisals, which use slightly more relaxed criteria for
evidence, have been conducted at JPL for the past three
years. Complete information on the CMMI® and SCAMPI
can be found on SEI’s CMMI® website at
<http://www.sei.cmu.edu/cmmi/cmmi.html>.

Use of Organizational Change Management (OCM) and
Customer Relationship Management (CRM)

Aware of the danger that all this effort could become
“shelfware,” JPL’s senior management was eager to commit
the resources to ensure that these changes were deployed
into the software community, and that they impacted the
way that software is managed, developed and acquired. As
a result, the SQI Project took a very proactive approach to
organizational change management and customer
relationship management, both concepts and approaches not
traditionally invoked in an engineering environment. This
approach is the antithesis of the typical one affectionately
known as “If we build it, they will come.” Instead, it
involves proactively reaching out to customers, and doing
whatever it takes to facilitate their understanding and usage
of processes, products and services.

For those not familiar with these two concepts, some
definitions are provided here. Organizational change
management (OCM) is “the methodology that integrates

change and the ability to adapt into the organization.” [18]
OCM involves working with a target community to
systematically introduce them to desired changes in such a
way that those changes are eventually adopted and become
commonplace [11], [19]. It is based largely on Rogers’
seminal work on diffusion of innovation [15] which is
summarized in Table 2. The SQI Project has employed
several of these strategies for diffusing innovations
including relevance, customer focus, user friendliness,
education, likelihood, measurement and testimony [1].

One of the premises of OCM is that people tend to fall into
one of five change adoption categories and respond
accordingly, as shown in Table 3. Another premise is that
individuals tend to commit to change in predictable stages
as shown in the OCM curve in Figure 2 [6]. The SQI
Project developed specific descriptions for what each of the
OCM stages would mean at JPL and then utilized them in
their OCM approach. See Table 4 for their OCM stage
definitions and activities. They chose four pathfinder
software-intensive sections to be “early adopters” and
worked closely with them to implement various aspects of
the CMMI® and the JPL software processes. In addition,
they proactively reached out to projects in the early stages
of development, e.g., Phase A – Mission and System
Definition and Phase B – Preliminary Design. Lastly, they
developed several venues for reaching out to the software
community as a whole. These are described in more detail
in Section 6.

The SQI Project is very fortunate to have the “must haves”
necessary for success in creating major change defined by
Hutton [9]:

1. A compelling reason for change – NASA agency-
wide initiative, Caltech JPL Advisory Group
recommendations, recent highly visible failures
and corresponding accident reports

2. Suitable sponsors – Associate Director for Flight
Projects and Mission Success, and Directors for
program and technical Directorates

3. Informed commitment of sponsors – substantial
burden funding and active commitment of
Directors and senior management

4. A change agent or “champion” – Process Owner
for the Develop Software Products (DSP) process.

Customer relationship management (CRM) is “a strategy
used to learn more about customer’s needs and behaviors in
order to develop stronger relationships with them.” [5]
CRM helps ensure that all products and services truly
provide value to the customer, and that the “real” customers
are being targeted and reached [4], [7], [16].

Available Products

The SQI Project developed a broad range of products,
services, and training to support managers and practitioners
throughout the entire software development life-cycle.

 4

Available products fall into the following categories:
1. Institutional requirements (includes policies,

processes, procedures, and standards)
2. Compliance matrices
3. Handbooks and guides
4. Checklists
5. Templates
6. Sample documents
7. Studies and Reports (including engineering

models)

Actual products available within each category are shown in
Table 5. Each of these products was designed to assist
managers and practitioners in generating the typical
deliverable products that are part of the software life-cycle,
and to ensure that those products comply with the JPL
standard software process. This includes cost estimates,
plans, reviews, documentation, test procedures, etc.

Some of the more popular products tend to be the document
templates because they not only provide a document outline,
but also include actual document format and content
suggestions. The most helpful template has proven to be
the Software Management Plan (SMP) template since it
assists projects in planning their development activities.
Training is discussed in Section 7 and consulting services
are discussed in Section 8. Of course, once a product
becomes available, it needs to be deployed.

4. DEPLOYMENT PROCESS

The SQI Project developed and is following a rigorous
process for creating and deploying an asset that includes:

1. Collect user requirements and/or CMMI® needs.
2. Generate the process, product or artifact.
3. Develop Infrastructure and Operations approach

and tools to support it.
4. Develop Communications and Outreach materials

to support it.
5. Develop Education and Training materials to

support it.
6. Perform Project Support to promulgate it.
7. Collect process and customer metrics to track it.
8. Capture and document Lessons Learned.
9. Update the process, product or artifact based on

feedback.

Hence, the deployment process includes the following four
parts which occur sequentially whenever a product is
deployed, as shown in Figure 3:

1. Infrastructure and Operations -- develop the
necessary infrastructure and operations approach
for each area

2. Communication and Outreach – communicate
with, and systematically reach out to, the user

community so that they know what is available and
understand where to obtain it.

3. Education and Training – provide classroom and
computer-based training in the desired processes,
products and tools

4. Project Support – provide consulting support to
projects across a broad range of relevant topics.

These four parts of deployment are described in more detail
in the next four sections of this paper.

5. INFRASTRUCTURE AND OPERATIONS

Infrastructure and Operations involves developing the
necessary infrastructure and operations approach for the
SQI Project as a whole, and also for each item to be
deployed. It includes the contact management system,
problem management system (action item tracking,
problem/failure reporting), configuration management
system, electronic library, metrics collection, customer e-
mail lists, customer tracking database for CRM, project
calendar, target audience definition and strategy, intellectual
property approach, and Operations Plan. This is the
foundation upon which all other aspects of deployment are
built. Of course, the products and services themselves must
first be generated, and this infrastructure greatly assists that
process.

6. COMMUNICATION AND OUTREACH

Communication and Outreach involves communicating
with, and systematically reaching out to, the user
community so that they know and understand what is
available. It includes a website, presentations, seminars,
brochure, OCM and CRM approaches, surveys, forums,
interest groups, etc.

The SQI Project generated an SQI OCM approach that
defines the following:

• Organizational change management strategy
• Infusion goals and change acceptance time lines
• Themes and thrusts
• Key stakeholders and segments
• Communications vehicles
• SQI logo, brochure, fliers, and tag lines
• Roles and responsibilities, and interactions

amongst the elements to achieve the changes.
This OCM approach informs all aspects of their
communication and outreach activities and provides an
integrated message to their customers.

The SQI Project developed an extensive website to support
their user community and gave it a very easy to find URL.
The website is structured along the lines of the product
categories in Table 5. It also includes information about
training, seminars, CMMI, frequently asked questions,

 5

contacts, etc. They also generated a tailorable presentation
describing the products, services and training it provides,
and is in the process of giving the presentation to all
software-intensive organizations at the lab. In addition,
they developed a 3-fold brochure, bookmark and cubicle
clip to help promote their website and services. They use
multiple communication channels to communicate their
message, ranging from community e-mail lists, to websites,
posters, fliers, cafeteria monitors, newsletters, etc.

Also, the SQI Project sponsors several seminars in an
attempt to reach out to the software community as a whole,
and to a particular set within that, namely Software Test
Engineers.

1. SQI Software Seminar Series – Shares information
about the practices and methodologies for improving
software quality.

• One-hour noon-time presentations by internal JPL
speakers on various software topics concerned with
software processes, practices, methodologies, and
project experiences.

2. SQI Software Tool Service (STS) Seminar Series –
Highlights software engineering tools available from
industry and academia.

• Short seminars and tutorials are offered by various
vendors on their commercial-off-the-shelf (COTS)
tools for use in the software development process,
including CASE tools, operating systems,
languages, debugging tools, and test tools, etc.

3. JPL Software Test Guild – Provides a forum for JPL
Test Engineers to network, learn and share knowledge.

• One hour special interest group (SIG) meeting of
software test engineers covering topics ranging
from test tools to test methodologies to lessons
learned.

7. EDUCATION AND TRAINING

Education and Training involves providing educational
materials and classroom and computer-based training in the
desired processes, products and tools. It includes a JPL
Software Training Plan that defines the target customers,
required skills sets, and training goals, and describes the
training process to be utilized [23]. Courses are offered on
such topics as software management, software engineering,
and process improvement [10]. A biannual training survey
is conducted in order to gauge the impact of, and
satisfaction with, the software training program. In
addition, the four-part Kirkpatrick Model is used to evaluate
training effectiveness [13]. (See Table 6 for a description of

JPL’s use of this model.) The course titles and target
audience in each category are discussed below.

Software Management Courses

Currently four software management courses are offered to
Project Managers (PMs) and Project Element Managers
(PEMs) to give them a general overview of software project
planning, and then more details on software project monitor
and control. All courses are offered quarterly and include
Software Management and Planning (SMP), Quantitative
Software Management (QSM), Software Risk Management
(SRM), and Software Acquisition Management (SAM).

Software Engineering Courses

Currently five software engineering courses are offered to
Cognizant Engineers (Cog Es) and Software Engineers,
including Software Product Engineering (SPE), Software
Peer Reviews (SPR), Software Testing, System Software
Reliability, and System Requirements and Management.
The last course covers systems requirements as well as
software requirements.

Software Process Improvement Courses

The software process improvement training is focused on
the Capability Maturity Model Integration (CMMI®). Four
courses are offered including Overview of CMMI®,
Introduction to CMMI®, Intermediate CMMI®, and
Mastering Process Improvement. While these courses are
primarily meant for SQI Project personnel, process
engineers, system engineers and any others involved in
process improvement, it is recommended that senior
managers and other managers also take the overview
course.

8. PROJECT SUPPORT

Project Support involves providing consulting support to
projects across a broad range of relevant topics so that they
can use the products in their own environment and for their
specific purposes. It includes consulting in the areas of cost
estimation, software project planning, software project
tracking, earned value management (EVM), metrics
definition and implementation, defects and reliability,
software acquisition, software tools, use of templates,
software testing, software quality assurance, CMMI®, etc.

Extensive consulting support is provided to the four target
sections and also to projects in the early phases of the
system life-cycle. Additional ad hoc consulting is provided
as requested. Examples of consulting support provided to
projects include:

 6

1. Support for generating software cost estimates (effort,
schedule, budget) for proposals, Phase A studies or
detailed Phase B cost estimates, based on the Software
Cost Estimation Handbook, the Cost Database,
Software Cost Analysis Tool (SCAT) [2], and “rules of
thumb” provided in various institutional models
(productivity, development effort by phase, schedule
time by effort, etc.)

2. Support for doing software project planning, especially
generating a Software Management Plan (SMP), based
on the SMP Template, the Software Development
Requirements (SDRs), the Software Process Tailoring
Guide, the Software Risk Management Handbook,
sample documents, etc.

3. Support for evaluating, selecting, and procuring various
software engineering tools via the Software Tool
Service (STS).

4. Support for generating various types of documentation
based on the various document templates, applicable
handbooks, sample documents, etc. (See Figure 4.)

All customer contacts made by SQI are tracked via the SQI
contact management system and categorized as follows:
Information, Outreach, Training, and Consulting. This
consulting support is provided free of charge up to a certain
point, usually around 40 hours.

9. LESSONS LEARNED

The JPL SQI Project has collected a number of observations
or “lessons learned” from its efforts to improve the
management of software in an engineering and scientific
environment. These observations or lessons fall into three
basic categories: process improvement, creating assets, and
deploying assets.

Process Improvement

1. Start with a proven framework. – The CMMI®

framework offered a proven process improvement
approach and appraisal benchmark. It facilitated the
measurement of progress against that benchmark.

2. Get outside help if necessary. – Consulting support on
CMMI® provided by the Center for Systems
Management (CSM) proved to be very helpful in
understanding the model and in generating evidence for
appraisals. The advice of the Lead Auditor to “start
small, start slow, and start simple” [12] helped in
setting realistic goals and objectives, and establishing
an appropriate horizon for change acceptance.

3. Build on previous efforts. – The SQI Project was able
to build on previous reengineering efforts, especially
the major reengineering activities associated with
Process-Based Management (PBM) and ISO 9000 in
the late 1990’s.

4. Reach the “front line” too. – The SQI Project is very
fortunate to have the “must haves” necessary for

success in creating major change. Senior management
support is important, however, so is the support of front
line managers (supervisors). That support needs to be
painstakingly earned, one meeting or presentation at a
time.

5. Other concurrent major changes can be a mixed
blessing, i.e., sources of distraction or opportunity. –
Recently the entire Engineering and Science
Directorate (ESD) underwent a major reorganization,
and the effects on software improvement still need to
be fully understood. It means many new players, but
also provides many additional opportunities.

Creating Assets

6. Start by documenting the current processes.

Documenting the current processes provides a
necessary baseline and a basis for future improvement.

7. Provide tools to support requirements and facilitate
process compliance. – When you begin with specific
requirements and then develop tools to actually
implement them, e.g., handbooks, templates, models,
then

8. Utilize many reviewers to promote ownership. – When
many reviewers who are representative of different
domains and perspectives provide comments on new or
revised products, it promotes ownership or “buy-in” of
the final result.

9. Strive for consistency amongst products – When many
products and guidelines are generated over time by
several different individuals, there can be issues with
consistency amongst those products. At some point, it
is necessary to step back and review the entire product
suite to ensure that they are consistent with the
standards and frameworks being utilized, and that they
are consistent with each other. That is, standards,
handbooks, templates and training about a particular
topic all need to convey the same message.

10. Allocate sufficient time for curriculum development. –
Curriculum development and defining course content is
very time consuming. On average, it takes
approximately four months to develop a new course.

11. Update courses regularly. – When processes and
products are changing and the environment is dynamic,
courses need to be updated regularly to reflect the latest
information.

Deploying Assets

12. Use OCM and CRM to facilitate change. – There are

several advantages to proactively using OCM and
CRM. It helps to maintain a customer focus and to
create motivation for reaching out to customers. Also,
when setting priorities, it helps to know who your
primary target audience is vs. your secondary or tertiary
audience. For example, some “eager beavers” or early
adopters may not be part of your primary customer
group.

 7

13. Pair Process Engineers with “Shepherds”. – Process
Engineers from each of the target sections were paired
with a representative from the SQI Project who worked
with them to understand CMMI® and its implications
for their organization.

14. Address “culture issues” head on. – The SQI Project
needed to address some culture issues it encountered
when deploying assets.

a. The major difference between how software is
developed for Flight Software applications and
how it is developed for Ground Software
applications, especially software that is
developed for multi-mission purposes.

b. Factors that engendered resistance to change
such as the perception of insufficient time and
resources to try something new, program and
project constraints, and the difficulty of
change itself.

c. “Baggage” from previous process
improvement efforts and the false perception
of “just another unfunded mandate.”

15. Conduct internal appraisals periodically. – When
periodic internal appraisals are conducted, it reveals
progress and helps to show what additional effort is
required to meet the stated goals.

16. Collect metrics and measure regularly. – Collect
metrics, and conduct regular surveys and user forums to
determine the level of infusion into the organization
and to uncover any barriers to acceptance. Measure
infusion, effectiveness, customer satisfaction, progress,
etc. Remember that “without measurement, you’re just
guessing!” [14]

17. Track customer contacts. – It is helpful to track
customer contacts so there are no duplications and
customers don’t feel pestered by many representatives
covering the same territory. It is also useful for
reporting to outreach efforts to management.

18. Use an electronic library. – Use of an electronic library
promotes information sharing and collaboration among
various team members and projects.

19. Communicate via multiple avenues and promote
shamelessly. It never helps a change effort to be a
“well kept secret.” No matter how many times a
message is communicated, there still may be some who
haven’t gotten the message. Some people prefer e-
mail, while others prefer fliers, posters, presentations or
seminars. It helps to think of novel ways to attract
attention such as bookmarks, cubicle pins, brochures,
websites, etc.

20. Address frequently asked questions about products and
about who to contact. Create a set of frequently asked
questions (FAQs) to reflect recent enquiries and to
anticipate the types of concerns customers may have.
Make a list of Points of Contact (POCs) for various
types of issues and who the subject matter experts are
for each area.

10. CONCLUSIONS

Changes in how software is managed, developed and
acquired do not come quickly or easily. The improvement
process needs to be approached with many of the same
deliberate methods and practices that are used in actual
system development [8]. It helps to proactively reach out to
customers instead of only waiting for them to come to you.
It is important to maintain the proper balance between
defining processes or generating assets and actually
deploying them and supporting customers. If this balance is
not achieved, all the products generated just become
“shelfware.”

11. ACKNOWLEDGEMENTS

Many people have contributed to the success of JPL’s
Software Quality Improvement Project and deserve
recognition.

• Thomas R. Gavin – Associate Director for Flight

Projects and Mission Success
• Chris Jones, William Weber, John Beckman –

Directors for program and engineering Directorates
• David Nichols – Process Owner for the Develop

Software Products (DSP) process
• David Swenson – Manager of the Project Support

Office and the Technical Infrastructure (TI) Council
• Frank Kuykendall, Chi Lin, and Steve Flanagan – SQI

Project Management, past and present.
• Milton Lavin – SQI Project Engineer
• Jairus Hihn – SQI Measurement, Estimation and

Analysis Element
• John Hackney and Pam Francel – SQI Process and

Product Definition Element
• Kathleen Crean, George Rinker, Jody Steinbacher, Bill

Taber, and Blake Whittington – Software Process
Engineers

• Alan Ferdman – CMMI Internal Appraisal Team Lead
• Brian Vickers – SQI Software Training and Seminar

Coordinator
• John Greensage – SQI Deployment Systems Engineer
• Michelle Medina – SQI Software Training Logistics

Support
• Ray Kile and Carlo Rodriquez – CMMI® Auditors

from CSM, evaluation of JPL’s CMMI® Maturity
Level 2/3 Process Areas (PAs).

In addition several instructors spent time developing course
content and instructing classes: Robert Barry, Erich
Corduan, Dan Crichton, William Decker, David Eisenman,
Dan Erickson, Alan Ferdman, John Hackney, Dave
Hermsen, Jairus Hihn, Terry Himes, Suzanne Klein, Frank
McGarry, Ron Morillo, George Rinker, Nicolas Rouquette,
Kimberly Simpson, Tuyet-Lan Tran, and former instructors

Milton Lavin, Burt Sigal and Jody Steinbacher. Nor should
we forget ~1000 students who have attended our courses
and provided valuable feedback.

The work described in this paper was performed at the Jet
Propulsion Laboratory, California Institute of Technology
under a contract with the National Aeronautics and Space
Administration (NASA). Reference herein to any specific
commercial product, process or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government,
NASA or the Jet Propulsion Laboratory, California Institute
of Technology.

REFERENCES

[1] Mark A. Ardis and Janel A. Green, Successful
Introduction of Domain Engineering into Software
Development, Bell Labs Technical Journal, July-Sept. 1998

[2] Barry W. Boehm, et al, Software Cost Estimation with
COCOMO II, Prentice-Hall PTR, Prentice-hall Inc., Upper
Saddle River, New Jersey, 2000

 [3] Mary Beth Chrissis, Mike Konrad, Sandy Shrum,
CMMI: Guidelines for Process Integration and Product
Improvement, Addison-Wesley, San Francisco, 2003

[4] William H. Davidow and Bro Uttal, Total Customer
Service: The Ultimate Weapon, Harper Perennial, 1990

[5] Stewart Deck, What Is CRM?, CIO.com, May 2001

[6] SuZ Garcia and Chuck Myers, Out from Dependency:
Thriving as an Insurgent in a Sometimes Hostile
Environment, SEPG Conference, 2001

[7] Randy Harris, What Is a Customer Relationship
Management (CRM) System?, DarwinMag.com, December
2003

 [8] Watts S. Humphrey, A Discipline for Software
Engineering, Addison-Wesley, New York, 1995

[9] David H. Hutton, The Change Agents’ Handbook: A
Survival Guide for Quality Improvement Champions, ASQ
Quality Press, Milwaukee, Wisconsin, 1994

 8

[10] P. A. “Trisha” Jansma, Got Software? What Managers
and Engineers Need to Know, IEEE Aerospace Conference,
March 2004

[11] Jerald M. Jellison, Overcoming Resistance: A Practical
Guide to Producing Change in the Workplace, Simon and
Schuster, New York, 1993

[12] Ray Kile, Starting a Process Improvement Program
Effectively, Center for Systems Management, Inc., 2003

 [13] Donald L. Kirkpatrick, Evaluating Training
Programs: The Four Levels, Berrett-Koehler Publishers,
Inc., 2nd edition, July 1998

 [14] David F. Rico, ROI of Software Process Improvement:
 Metrics for Project Managers and Software Engineers, J.
Ross Publishing, Boca Raton, Florida, 2004

[15] Everett M. Rogers, Diffusion of Innovations, 5th Edition,
Free Press, 2003

[16] Mohanbir Sawhney, Fundamentals of Value, CIO.com,
July 2003

 [17] Capability Maturity Model Integration, Version 1.1,
Carnegie Mellon University, Software Engineering
Institute, Pittsburgh, PA, 2002

[18] Dallas Independent School District, Project OASIS:
Managing Organizational Change, Oracle Applications
User Group: Software Change Management SIG, Spring
Conference 2002

[19] Journal of Organizational Change Management ISSN:
0953-4814

 [20] NASA Program and Project Management Processes
and Requirements, NASA Procedures and Guidelines, NPG
7120.5B, 2002

[21] NASA Software Management, Engineering, and
Assurance, NASA Procedures and Guidelines, NPG 2820

[22] People Capability Maturity Model, Version 2.0,
Carnegie Mellon University, Software Engineering
Institute, Pittsburgh, PA, 2001

 [23] U.S. Office of Personnel Management, Office of
Workforce Relations, A Guide to Strategically Planning
Training and Measuring Results, OWR-35, July 2000

BIOGRAPHY

 P. A. “Trisha” Jansma is the Project
Element Manager (PEM) for

the Deployment Element of the
Software Quality Improvement (SQI)
Project at the Jet Propulsion Laboratory
(JPL) in Pasadena, CA. With over 30
years at JPL in both line and task

management positions, she has a broad background in
systems and software engineering and information
technology, in engineering and scientific environments.

 9

Jansma has extensive experience in the management,
design, development and delivery of cost-effective,
software-intensive systems. She has experience in all facets
of project life-cycle development, from initial feasibility
analysis, proposal development and conceptual design
through documentation, implementation, user training,
enhancement and operations. Jansma has a B.A. in
Mathematics from Point Loma Nazarene University, an
M.S. in Computer Science from the University of Southern
California, and an Executive M.B.A. from the Peter F.
Drucker Graduate School of Management at Claremont
Graduate University. She also holds a California
Community College Teaching Credential and a California
Secondary Teaching Credential, and has taught Systems and
Software Engineering courses at the graduate level.

Figure 1 JPL CMMI® Target Profile (Capability Level by Fiscal Year)

Pro
jec

t P
lan

ning

Pro
jec

t M
onito

rin
g an

d C
ontro

l

Supplie
r A

gree
men

t M
an

ag
em

en
t

Req
uire

men
ts

Man
ag

em
en

t

Mea
su

rem
en

t &
 A

nals
ys

is

Config
urat

ion M
an

ag
em

en
t

Pro
ce

ss
 &

 Pro
duct

Quali
ty

Ass
uran

ce

Risk
 M

an
ag

em
en

t

Req
uire

men
ts

Defi
nitio

n

Tec
hnica

l S
olutio

n

Pro
duct

Integ
rat

ion

Veri
fic

ati
on

Vali
dati

on

Dec
isi

on A
naly

sis
 &

 R
es

olutio
n

Integ
rat

ed
 Pro

duct
Man

ag
em

en
t

Org
an

iza
tio

nal
Pro

ce
ss

 Focu
s

Org
an

iza
tio

nal
Pro

ce
ss

 D
efi

nitio
n

Org
an

iza
tio

nal
Trai

ning

PP PM
C

SA
M

R
EQ

M

M
A

C
M

PP
Q

A

R
SK

M

R
D

TS PI VE
R

VA
L

D
A

R

IP
M

O
PF

O
PD

O
T

FY 2004 3 3 3
FY 2005 2 2 2 2 2 2 2 2 3 3 3
FY 2006 3 2 2 2 3 3 3 2 2 2 2 2 2 2 2 4 4 4
FY 2007 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4

Key:
2 = Capability Level 2
3 = Capability Level 3
4 = Capability Level 4

Table 1 CMMI® Process Areas By Maturity Level

Maturity Level Focus CMMI® Process Areas Category
5 Optimizing

Continuous
Process
Improvement

Organizational Innovation and Deployment (OID)
Causal Analysis and Resolution (CAR)

Adv. Process Mgmt.
Adv. Support

4 Quantitatively
Managed

Quantitative
Management

Organizational Process Performance (OPP)
Quantitative Project Management (QPM)

Adv. Process Mgmt.
Adv. Project Mgmt.

3 Defined

Process
Standardization

Requirements Development (RD)
Technical Solution (TS)
Product Integration (PI)
Verification (Ver)
Validation (Val)
Organizational Process Focus (OPF)
Organizational Process Definition (OPD)
Organizational Training (OT)
Integrated Project Management for IPPD (IPM)
Risk Management (RSKM)
Integrated Teaming (IT)
Integrated Supplier Management (ISM)
Decision Analysis and Resolution (DAR)
Organizational Environment for Integration (OEI)

Engineering
Engineering
Engineering
Engineering
Engineering
Basic Process Mgmt.
Basic Process Mgmt.
Basic Process Mgmt.
Adv. Project Mgmt.
Adv. Project Mgmt.
Adv. Project Mgmt.
Adv. Project Mgmt.
Adv. Support
Adv. Support

2 Managed

Basic Project
Management

Requirements Management (REQM)
Project Planning (PP)
Project Monitoring and Control (PMC)
Supplier Agreement Management (SAM)
Measurement and Analysis (MA)
Process and Product Quality Assurance (PPQA)
Configuration Management (CM)

Engineering
Basic Project Mgmt.
Basic Project Mgmt.
Basic Project Mgmt.
Basic Support
Basic Support
Basic Support

1 Initial
 10

 11

Table 2 Rogers’ Diffusion of Innovation Model

Attributes of Innovation Strategies for Optimizing Attributes
Relative Advantage – degree to which the
innovation is perceived to improve upon
existing solutions

Technology Improvement – Introduce a new technology that
is more powerful than the existing technology.

Compatibility – the difficulty associated
with mastering the new innovation

Relevance – Make sure the problem solved by the innovation
is important to adopters.
Realism – Do not try to change too much at once or to please
too many different types of users.
Customer Focus – Seek input from current and future
adopters and design a solution that they want.

Complexity – the difficulty associated with
mastering the new innovation

Developer Friendliness – Reduce the learning curve for
developers of the innovation.
User Friendliness – Reduce the learning curve for adopters by
making the innovation easy to learn and use.
Reuse – Reuse as much of the old process and technology as
possible.
Education – Provide tutorials and demonstrations to potential
users and managers. Publish useful information on Web pages
and offer pointers to Early Adopters.

Trialability – the ability to experiment with
the innovation before adopting it in normal
operations

Cost – Reduce the cost of trial use.
Likelihood – Increase the likelihood that trial use will succeed.

Observability – the ease with which
improvement is noticed after adoption of the
innovation

Measurement – Collect data about the old and new
technologies for comparison.
Testimony – Provide forums for adopters to describe their
experiences.
Shadowing – Provide a side by side comparison by running
two projects with the same goals, but with one using the old
technology and the other using the new.

[15]

 12

Table 3 Rogers’ Categories of People and Their Responses to Innovation

Categories Characteristics Responses to Innovation
Innovators –
those who create new
technologies

Gatekeepers for any new technology; appreciate
technology for its own sake; appreciate
architecture of technology; will spend hours
trying to get technology to work; very forgiving
of poor documentation, slow performance,
incomplete functionality, etc.; helpful critics

Will settle for buggy or difficult-
to-use solution components; are
accustomed to finding their way
around the glitches.

Early Adopters – those
who are the first to try
innovations

Dominated by a dream or vision; focus on
business goals; usually have close ties with
“techie” innovators; match emerging
technologies to strategic opportunities; look for
breakthrough; thrive on high visibility, high risk
projects; have charisma to generate buy-in for
projects; do no have credibility with early
majority

Can see the strategic advantage
of the improvement or change
and are willing to help the
organization get there.

Early Majority – those
who establish an
innovation’s success by
adopting it for regular use

Do not want to be pioneers (prudent souls);
control majority of budget; want percentage
improvement (incremental, measurable,
predictable progress); not risk averse, but want
to manage it carefully; hard to win over, but are
loyal once won.

Can see the advantage of the
improvement or change and are
willing to carefully adopt it.

Late Majority – those
who adopt an innovation
after its success has been
demonstrated

Avoid discontinuous improvement (revolution);
adopt only to stay on par with the rest of the
world; somewhat fearful of new technologies;
like preassembled packages with everything
bundled

Need a lot of support to adopt
the solution component.

Laggards –
those who never adopt or
who do so reluctantly
after it becomes
necessary

“Nay sayers”; adopt only after technology is not
recognizable as separate entity; constantly point
at discrepancies between what was promised and
what is

Are very resistant to changing
the status quo, despite the
effectiveness of the solution
component.

[6], [15]

Figure 2 OCM Curve and Stages

Contact
Understanding

Awareness

Installation

Adoption

Institutionalization

Time

C
om

m
itm

ent to C
hange

1 2

3

4

5
6

Figure 3 SQI Deployment Process

Infrastructure
& Operations

Place the asset
in the process
asset library
(PAL) –
on-line electronic
library – under
configuration
management.

Asset
Creation &
Review

Generate the
asset (process,
product, tool, or
service), and
conduct internal
and external
reviews.

Communica-
tion &
Outreach

Communicate
with, and
systematically
reach out to, the
user community
so they know the
product is
available and
where to obtain
it.

Education &
Training

Provide
educational
materials and
classroom
training in
underlying
concepts and
how to use the
asset.

Project
Support

Provide hands-
on consulting
support to
projects in using
the asset in their
environment and
for their specific
purposes.

 13

 14

Table 4 SQI OCM Stages and Activities

OCM
Stages

OCM Stage Name OCM Definition at JPL Associated OCM Activities

0 None Never heard of SQI Project None
1 Contact Have heard of SQI Project SQI publicity and outreach activities --

SQI brochure, bookmark, cubicle clip,
announcements, e-mail, fliers, posters

2 Awareness Aware of SDRs, Software website,
SQI Road Show, and existence of
SQI Software Seminar Series

SDRs and FPPs in JPL Rules!, Software
website, SQI Road Show, SQI Software
Seminar Series, forums, surveys

3 Understanding Understand SDRs, basic SQI
products (templates, handbooks,
guides, etc.) and CMMI® Maturity
Level 2 Process Areas (PAs)

SDR Awareness Briefing, SDR Overview
course, SQI training courses – SMP,
QSM, SPE, Overview of CMMI; SQI
Software Seminar Series, Software Test
Guild

4 Installation
(Trial Use)

Utilize SDRs and some SQI
products and services; implement
specific practices of some CMMI®
PAs (CL 1)

SQI consulting –planning, SDRs, cost
estimates metrics, tools, etc.; benefits &
rationale, case studies, SQI impact
metrics

5 Adoption Some orgs/projects comply with
SDRs and FPPs; implement some
CMMI® PAs at Capability Level 2
(CL 2) -- specific and generic
practices

Target sections and Process Engr., SQI
Rep./Shepherd, CMMI® Class B
appraisals & SCAMPIs, CMMI®
Implementation Plans, more
training/coaching, lessons learned;
address barriers to change.

6 Institutionalizatio
n

All mission-critical software orgs &
projects comply with SDRs and
FPPs; achieve CMMI® Maturity
Level 2/3

SQI Element activities, CMMI® Profile,
CMMI® Pre-Assessments and formal
SCAMPI, SQI OCM activities and
metrics

 15

Table 5 Products Available to Support the Software Development Process

Types of Products Products Available in Each Category
1. Institutional Requirements Flight Project Practices (FPPs)

Design, Verification/Validation and Operations Principles
Software Development Requirements (SDR) Policy
Flight Project Gate Documents

2. Compliance Matrices Practices and Principles Compliance Matrix
SDR Compliance Matrix

3. Handbooks and Guides Software Cost Estimation Handbook
Software Process Tailoring Guide
Software Project Measures Guide
Software Requirements Development and Management Guide
Software Reviews Handbook
Software Risk Management Handbook
Software Stress Testing Guideline

4. Checklists Milestone Review Checklists
 Architectural Design Review Checklist
 Software Delivery Review Checklist
 Software Design Review Checklist
 Software Requirements Review Checklist
 Software Test Readiness Review Checklist
Peer Review Checklists
 Architectural Design Checklist
 C Code Checklist
 Detailed Design Checklist
 FORTRAN Code Checklist
 Software Inheritance Checklist
 Software Requirements Checklist
 Source Code Checklist
 Test Plan Checklist
 Testing, Results and Delivery Checklist

5. Templates Command Dictionary Template
Release Description Document (RDD) Template
Software Design Document (SDD) Template
Software Interface Specification (SIS) Template
Software Management Plan (SMP) Template
Software Requirements Document (SRD) Template
Software Supplier Agreement Management Plan (SSAMP) Template
Software Test Plan (STP) Template
Telemetry Dictionary Template
User’s Guide/Software Operator’s Manual (UG/SOM) Template

6. Sample Documents Sample Release Description Documents (RDD)
Sample Software Coding Standards
Sample Software Management Plans (SMP)
Sample Software Requirements Documents (SRD)
Sample Software Specification Documents (SSD)
Sample Software Test Plan (STP)
Sample User’s Guides (UG)

7. Studies and Reports Conference Papers and Publications
Flight Software Cost Growth: Causes and Recommendations
Mission Critical Software Survey
Profile of Software at JPL
Software Engineering Models
Survey of Software Tools and Practices

 16

 Table 6 SQI Use of Kirkpatrick Model

Kirk-
patrick
Model
Level

Kirkpatrick Model
Level Name

Kirkpatrick Model
Definition at JPL

Associated Kirkpatrick Model
Activities

1 Reactions Collect reactions of class attendees,
and perceptions of instructors and
SQI Training Coordinator

Completed module and course
evaluation forms from course
participants, evaluation compilation
and analysis, verbal feedback from
instructors, Training Coordinator
perception of reception

2 Learning Determine what principles, facts and
techniques were understood and
absorbed by the class attendees, i.e.,
what they now know and are able to
do as a result of the training

Results of follow-up interviews
conducted <= 10 weeks after class,
annual training survey results;
demonstrated comprehension of
course concepts and techniques, pre-
and post- test vehicles and results

 OCM and CMMI® Activities
Below

3 Behavior Determine changes in “on-the-job”
behavior in the workplace itself
related to the desired and taught
behavior vs. original behavior.

Course objectives, specific desired
behaviors for each module, specific
practices of CMMI® PAs; detailed
behavior surveys, “Quick Look”
evaluations, SQA assessments,
CMMI® Class B Appraisals

4 Results Determine specific results across the
workplace, i.e., progress towards
primary SQI goals: cost and
schedule predictability, quality of
mission-critical software, project
start-up time, productivity, defect
rates, and reuse of software
products.

SQI measurement program,
especially institutional trends;
foundation models, measures, and
databases.

Figure 4 Software Documentation Using SQI Templates

Document
Template

Applicable
Handbook

Example
Document

Consulting
Complete

d
Project

Information

If

 17

	Attributes of Innovation
	Strategies for Optimizing Attributes

