Model Compilation for Real-Time Planning and Diagnosis with Feedback

Anthony Barrett
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, M/S 126-347, Pasadena, CA 91109
anthony.barrett@jpl.nasa.gov

Abstract
This paper describes MEXEC, an implemented micro executive that compiles a device model that can have feedback into a structure for subsequent evaluation. This system computes both the most likely current device mode from \(n \) sets of sensor measurements and the \(n-1 \) step reconfiguration plan that is most likely to result in reaching a target mode – if such a plan exists. A user tunes the system by increasing \(n \) to improve system capability at the cost of real-time performance.

1 Introduction
Over the past decade spacecraft complexity has exploded with increasingly ambitious mission requirements. Relatively simple flyby probes have been replaced with more capable remote orbiters, and these orbiters are slowly becoming communications relay satellites for even more ambitious mobile landers like the current Mars Exploration Rover, the planned Mars Science Lab, and the suggested aerobot at Titan. With this increased complexity there is also an increased probability that components will break and in unexpected ways with subtle interactions. While traditional approaches hand-craft rule-based diagnosis and recovery systems, the difficulty in creating these rule bases quickly gets out of hand as component interactions become more subtle. Model-based approaches address this issue, but their acceptance has been retarded by the complexity of the underlying evaluation systems when compared with a simple rule evaluator whose performance is guaranteed to be linear in the number of rules [Darwiche, 2000].

This paper combines ideas from Livingston [Williams and Nayak, 1996] with results in knowledge compilation for diagnosis [Darwiche, 1998] and planning [Barrett, 2004] to create MEXEC, a micro executive that is both model-based and has an onboard evaluation system whose simplicity is comparable to that of a rule evaluator. This involves taking a device model and compiling it into a structure that facilitates determining both a system’s current mode and how to reconfigure to a desired target mode in linear time. Thus the system’s architecture consists of an offline compiler and an online evaluator (see figure 1).

In addition an online performance guarantee, the global system reasoning during compilation handles feedback loops without any explicit mechanism. Also, the same compiled structure facilitates both mode identification and planning. Evaluating it one way computes the most likely current mode given \(n \) sets of measurements, and evaluating it another way computes the best \(n-1 \) step reconfiguration plan given current and target modes – if such a plan exists.

This paper starts by defining our device representation language and compares it with Livingston’s. It next presents a simple example device and shows how to compile it into an internal representation for linear time planning and diagnosis. The subsequent section shows how the structure is evaluated for both planning and diagnosis. To provide some realism, the implementation is described with a number of experiments. Finally the paper ends with a discussion of future work and conclusions.

2 Representing Devices
MEXEC’s device modeling language is a simplified yet equally expressive variant of Livingstone’s MPL. We model a device as a connected set of components, where each component operates in one of a number of modes. Essentially, each mode defines the relationships between a component’s inputs and its outputs. More precisely, we use five constructs to define: types of connections, abstract relations, components with modes and relations between inputs and outputs, modules to define multiple component
subsystems, and the top-level system being diagnosed. The following conventions facilitate defining our syntax.

- A word in italic denotes a parameter, like value.
- Ellipsis denotes repetition, like value...
- Square brackets denote optional contents, like [value].
- A vertical bar denotes choice between options, like false | true.

With these conventions the entire language’s syntax is defined in figure 2, which has constructs to respectively define connection types, well-formed formulas with arguments, user defined relations, components, modules, and a system. Just like Livingston, system name’s structure is a connected set of components and modules with input/output ports, but unlike Livingston these inputs and outputs can form feedback loops and are statically defined in connections sensed connections (sensors) and the commanded connections (affectors). While the wffs in components can only refer to variables in local component definitions as well as locally defined variables.

Another divergence from Livingston involves the modeling of components. While the syntax is similar, the semantics revolves around the concept of cost. Essentially a mode’s cost denotes now unlikely it is irrespective of any information, and a transition’s cost denotes how unlikely it is when its preconditions hold. While getting costs from Livingston’s probabilities is a simple matter of taking a probability’s negative log, our formalism makes users directly specify costs to reflect that the number specified is manually guessed, just like a probability.

3 Model Compilation
To provide an example of a modeled device, consider the following system, which has a single siderostat for tracking a star within an interferometer. This system is kept as simple as possible in order to facilitate its use as a running example in the rest of the paper. It starts by defining the values and then defines a component using the values and finally defines a system in terms of the component. One semantic restriction not mentioned in the syntax is that a definition cannot be used until after it has appeared. This keeps modelers from crafting infinite recursive definitions.

```lisp
(defvalues boolean (false true))
(defvalues command (idle track none))
(defcomponent siderostat
  :ports ((command in)(boolean valid))
  :modes ((Tracking :model (= valid true) :cost 20))
  :transitions (((Tracking -> Idling (= in idle)) (* -> unknown :true :cost 1000)))
  :structure ((siderostat sw (c o))))
```

3.1 Model to CNF
Compiling a device model starts by taking a system definition and recursively expanding its modules using the defmodules until only components remain with an optional conjunctive constraint. Since the example lacked any defmodules, this step results in a single component called “sw” which is a siderostat in the following list, where c is a command effecter and o is a Boolean observation sensor

```lisp
((siderostat sw (c o)))
```

As the example implies, name substitution occurs during the expansion. Inputs and outputs are replaced by actual parameter names – in and valid respectively become c and o. While not visible in the example, components get unique names by prefixing each structure element name with the current module name. For instance, if tst were a module, sw would become tst*sw, and the connection names would be similarly prefixed. This naming convention facilitates allowing module constraints that refer to connections and modes in substructure.

After determining components, their mode definitions are converted into a Boolean expression. This involves building an equation with the following form, where sname is the component’s name, and each disjunctive entry is for a different mode mname with model wff. Within this form, notice the subscripts that vary from 0 to n-1.

```lisp
(:and (:or (:not (= sname*mode mname)) wffi)...)```
For example, if \( n \) were one in our example the resulting equation would be the following.

\[
(:\text{and} (:\text{or} (:\text{not} (= \text{sw*mode, Tracking}))
\quad (= o \text{ true}))
\quad (:\text{or} (:\text{not} (= \text{sw*mode, Idling}))
\quad (= o \text{ false})))
\]

For higher \( n \), the disjuncts are replicated for each step and transition disjuncts are added. Transition disjuncts take on the following form, where \( sname \) is the component name, \( X \) denotes the \( X^{th} \) component transition, \( \text{frm}/\text{to}_o \) respectively denote the transition’s source/destination, and \( wff_{s,x} \) denotes its precondition at step \( i \). When \( \text{frm} \) is “*”, the \( \text{frm} \) constraint is dropped to denote that the transition is always enabled.

\[
(:\text{or} (:\text{not} (= \text{sname}*\text{trans, X}))
\quad (:\text{and} (= \text{sname}*\text{mode, \text{frm}})
\quad (= \text{sname}*\text{mode, to}_0, \text{wff}_{s,x}))
\]

Finally, these user-defined disjuncts are supplemented with system-defined disjuncts for not transitioning at all. They look respectively as follows, where the noop equation’s size depends on the number of transitions in order to avoid choosing no transition when some transition is enabled.

\[
(:\text{or} (:\text{not} (= \text{sname}*\text{trans, noop}))
\quad (:\text{and} (= \text{sname}*\text{mode, \text{frm}})
\quad (:\text{or} (:\text{not} (= \text{sname}*\text{mode, \text{frm}}))
\quad (:\text{not} \text{wff}_{s,x}))))
\]

Finally, with these constructs the compiler turns the a set of components into a single Boolean equation, conjoins that equation with the conjunction of \( \text{constraint} \ wffs \), and subsequently flatten the equation into a CNF form.

### 3.2 CNF to DNNF

Unfortunately finding a minimal satisfying assignment to a CNF equation is an NP-complete problem, and more compilation is needed to achieve linear time evaluation. Fortunately results from knowledge compilation research [Darwiche and Marquis, 2002] show how to convert the CNF representation into Decomposable Negation Normal Form (DNNF). It turns out that this form of logical expression can be evaluated in linear time to compute either the most likely diagnosis or an optimal \( n \) level plan.

While DNNF has been defined previously in terms of a Boolean expression, we make a slight extension for variable logic equations, where the negation of a variable assignment can be replaced by a disjunct of all other possible assignments to that same variable. This extends the DNNF formalism to constraint satisfaction problems.

**Definition 1:** A variable logic equation is in Decomposable Negation Normal Form if (1) it contains no negations and (2) the subexpressions under each conjunct refer to disjoint sets of variables.

Just as in the Boolean case, there are multiple possible variable logic DNNF expressions equivalent to the CNF and the objective is to find one that is as small as possible. Since Disjunctive Normal Form is also DNNF, the largest DNNF equivalent is exponentially larger than the CNF. Fortunately much smaller DNNF equivalents can often be found. The approach here mirrors the Boolean approach to finding a d-DNNF [Darwiche, 2002] by first recursively partitioning the CNF disjuncts and then traversing the partition tree to generate the DNNF.

The whole purpose for partitioning the disjuncts is to group those that refer to the same variables together and those that refer to different variables in different partitions. Since each disjunct refers to multiple variables, it is often the case that the disjuncts in two sibling partitions will refer to the same variable, but minimizing the cross partition variables dramatically reduces the size of the DNNF equation. This partitioning essentially converts a flat conjunct of disjuncts into an equation tree with internal AND nodes and disjuncts of literals at the leaves, where the number of propositions appearing in multiple branches below an AND node is minimized.

Mirroring the Boolean compiler, partitioning is done by mapping the CNF equation to a hyper-graph, where nodes and hyper-arcs respectively correspond to disjuncts and variables. The nodes that each hyper-arc connects are determined by the disjuncts where the hyper-arc’s corresponding variable appears. Given this hyper-graph, a recursive partitioning using a probabilistic min-cut algorithm [Wagner and Klimmek, 1996] computes a relatively good partition tree for the disjuncts, and generalizing this algorithm by weighting the hyperarcs with associated variable cardinalities does even better. See Figure 3 for an extremely simple example with two disjuncts and three variables whose cardinalities are 2. From the equation tree perspective, there is an AND node on top above disjuncts at the leaves. The branches of the AND node share the variable \( b \), which is recorded in the top node’s \( \text{Sep} \) set.

\[
\text{AND} \quad \text{Sep} = \{b\} \\
\quad \quad (\text{or} a=f \text{ b=t}) \quad (\text{or} b=f \text{ c=t})
\]

Figure 3: Example of partitioning a CNF equation

Once the equation tree is computed, computing the DNNF involves extracting each AND node’s associated shared variables using the equality

\[
eqn = \bigvee_{v \in \text{domain}(v)} \left( v = c \right) v = \text{eqn} \setminus \{v = c\},
\]

where \( \text{eqn} \setminus \{v = c\} \) is an equation generated by replacing disjuncts containing \( v = c \) with \( \text{True} \) and removing assignments to \( v \) from other disjuncts. If a disjunct ever ends up with no assignments, it becomes \( \text{False} \).
More formally, the DNNF equation is recursively defined on the equation tree using the two formulas below, where the first and second apply to internal and leaf nodes respectively. The first formula’s \(\text{instances}(N, \alpha)\) refers to the set of possible assignments to the vector of variables in \(N.Sep\) that are consistent with \(\alpha\). For instance, running these formulas over Figure 3’s tree starts by calling \(dnnf(\text{root}, \text{True})\), and the instances are \(b=t\) and \(b=f\) since only \(b\) is in \(\text{root.Sep}\), and both assignments agree with \(\text{True}\). In general the number of consistent instances grows exponentially with \(N.Sep\), leading to the use of min-cut to reduce the size of \(N.Sep\) for each partition.

\[
\begin{align*}
\text{dnnf}(N, \alpha) & \equiv \bigvee_{\beta \in \text{instances}(N, \alpha)} \left( \beta \land \bigwedge_{c \in N.\text{false}} \text{dnnf}(c, \alpha \wedge \beta) \right) \\
\text{dnnf}(\text{disj}, \alpha) & \equiv \begin{cases} 
\text{True} & \text{if } \alpha \Rightarrow \text{disj} \\
\bigvee_{\beta \in \text{disj} \land \alpha \wedge \neg \beta} \beta & \text{if } \exists \beta \Rightarrow \alpha \Rightarrow \neg \beta \\
\text{False} & \text{Otherwise}
\end{cases}
\end{align*}
\]

While walking the equation tree does provide a DNNF equation that can be evaluated in linear time, two very important optimizations involve merging common sub-expressions to decrease the size of the computed structure and caching computations made when visiting a node for improving compiler performance [Darwiche, 2002]. In Figure 4 there were no common sub-expressions to merge, and the resulting DNNF expression appears below.

\[
(\text{or } (\text{and } b=t \ c=t) \ (\text{and } b=f \ a=f))
\]

4 Onboard Evaluation

To illustrate a less trivial DNNF expression, consider the Figure 4 for the siderostat DNNF. Actually this is a slight simplification of the generated DNNF in that it was generated from a siderostat model that lacked the unknown mode – where the omission was motivated by space limitations. This expression’s top rightmost AND node has three children, and each child refers to a unique set of variables. From top to bottom these disjoint sets respectively are

\{sw*mode\_1\}, \{o\_1\}, and \{sw*mode\_2, sw*trans\_0, o\_0, c\_0\}.

Given that DNNF AND nodes have a disjoint branches property, finding optimal satisfying variable assignments becomes a simple three-step process:

1. associate costs with variable assignments in leaves;
2. propagate node costs up through the tree by either assigning the min or sum of the descendents’ costs to an OR or AND node respectively; and
3. if the root’s cost is 0, infinity, or some other value then respectively return default assignments, failure, or descend from the root to determine and return the variable assignments that contribute to its cost.

Actually, the algorithm is a little more general in that step 2 computes the number of min-cost assignments, and step 3 can extract any one of them in linear time.

4.1 Mode Estimation

Evaluating a DNNF structure to determine component modes starts by assigning costs to the \(\text{name*mode}_\_\alpha\) variables, where these costs come from the \(\text{cost}\) entry associated with each mode in the original model, and missing cost entries are assumed to be zero. For instance, none of the transitions have associated costs in the model, resulting in assigning zero to the \(\text{name*trans}_\_\alpha\) leave costs. Finally, sensed values are assigned either zero or infinity depending on the value sensed. In this case the sensed values for \(o\_0\) and \(o\_1\) were both true.

\[
\begin{align*}
0: [\text{sw*mode}_\_1 = \text{Tracking}] & 20: [\text{sw*mode}_\_0 = \text{Tracking}] \\
0: [o\_0 = \text{true}] & 0: [\text{sw*trans}_\_0 = \text{noop}] \\
20: [\text{sw*mode}_\_0 = \text{Idling}] & 0: [o\_0 = \text{true}] \\
0: [\text{sw*mode}_\_1 = \text{Idling}] & 0: [\text{sw*mode}_\_0 = \text{Idling}] \\
\end{align*}
\]

Following the simple propagation step, the associated node costs appear above the nodes in Figure 4. Note that the cost is of the top level node is 20. This value is used to prune the search when descending down the tree to determine the assignment to \(\text{sw*mode}_\_\alpha\), which is the most likely siderostat mode that matches the observations.

While this approach assumes forgetting of old state information, it can be enhanced to either remember the most likely last state or a set of likely last states using a particle filter approach. Since the only difference between such approaches revolves around leaf cost assignments, the requisite changes are very manageable.

4.2 Reconfiguration Planning

When evaluating a DNNF structure for a reconfiguration plan, a cost is assigned to each variable using a number of planning dependent preferences. First, not performing an action has zero cost. This results in associating zero with all leaves that set transitions to noops. Second, leaves denoting other transitions are assigned costs that come from \(\text{cost}\) entries associated with transitions. In the example all of these costs are assumed to be zero. Finally
name*mode_n and name*mode_n entries are assigned costs that depend respectively on the current and target mode. The leaf assignments that are consistent with these modes will cost zero and inconsistent leaves get an infinite cost. For instance, Figure 5 documents the evaluation to take a currently tracking siderostat and make it idle. In this case the cost is propagated up and then it is used to guide the descent to find the desired cost of c_n, the effecter variable.

![DNNF structure](image)

Figure 5: Evaluating a 2 level DNNF structure to compute a reconfiguration plan.

While a need to keep this example simple motivating not tagging transitions with costs, such tags reflect the likelihood of a transition once its preconditions are met. Thus, many transitions can have consistent preconditions and the underlying evaluation will actually adjust the preconditions to maximize the likelihood that the triggered transitions will result in attaining the target conditions. This implies that the planning algorithm finds n step solutions to probabilistic planning problems like those of BURIDAN [Kushmerick et al., 1994]. From this vantage point MEXEC’s compiled internal structure can be viewed as a limited policy for solving POMDP problems if a solution can be found in n-1 steps, but this perspective has yet to be fully explored.

5 Implementation and Experiments

The system is currently implemented in Allegro Common LISP with under 500 lines to compute a device’s CNF equation, under 500 lines to compute a CNF equation’s associated DNNF, and less than 80 lines to evaluate a DNNF equation to find all minimal cost satisfactions.

In addition to testing MEXEC on various switching circuit examples, there has been some work on developing and experimenting with models of a Space Interferometer Mission Test Bed 3 (STB-3) model [Ingham et al., 2001] and Barrett, 2003] had a 4318 node DNNF structure for experiments, the scaling issue already has been improved. In the case of our empirical experiments, the scaling issue can be improved. In the case of our empirical experiments, the scaling issue already has been improved by an order of magnitude. The results reported in [Chung and Barrett, 2003] had a 4318 node DNNF structure for the FIT model with n = 1.

![INTERFEROMETER](image)

Figure 6: A simplified schematic of the Formation Interferometer Test Bed (FIT). The left side of the dotted line represents the collector spacecraft and the right side of the dotted line represents the combiner spacecraft.

as well as the Formation Interferometer Test Bed (FIT) model, which is an extension on the STB-3 model. While STB-3 represents a single spacecraft interferometer, FIT represents a separated spacecraft interferometer. As illustrated in Figure 6, FIT is composed of combiner (right) and collector (left) spacecraft. The collector spacecraft precisely points at a star and reflects the starlight beam to the combiner spacecraft. While the combiner spacecraft also points at the star to collect the starlight, it also accurately points at the collector spacecraft in order to combine the starlight from the collector spacecraft with its own.

<table>
<thead>
<tr>
<th>Device</th>
<th>C</th>
<th>V</th>
<th>S</th>
<th>n=1</th>
<th>n=2</th>
<th>n=3</th>
<th>n=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB-3</td>
<td>7</td>
<td>26</td>
<td>13</td>
<td>125</td>
<td>851</td>
<td>5191</td>
<td>36354</td>
</tr>
<tr>
<td>FIT</td>
<td>17</td>
<td>64</td>
<td>12</td>
<td>235</td>
<td>1488</td>
<td>7620</td>
<td>39705</td>
</tr>
</tbody>
</table>

Table 1: DNNF sizes (in nodes) of interferometers with C components, V variables, S sensors, and n levels.
6 Related Work

While others have made the leap to applying compilation techniques to both simplify and accelerate embedded computation to determine a system's current mode of operation, they are more restricted than MEXEC. First, DNNF equation creation and evaluation was initially developed in a diagnosis application [Darwiche, 1998], but the resulting system restricted a component to only have one output and that there cannot be directed cycles (feedback) between components. MEXEC makes neither of these restrictions. The Mimi-ME system [Chung et al., 2001] similarly avoided making these restrictions, but it lacks hard real-time guarantees by virtue of having to solve an NP-complete problem, called MIN-SAT, when converting observations into mode estimates. MEXEC supports hard real-time performance guarantees.

The closest related work on real-time reconfiguration planning comes from the Burton reconfiguration planner used on DS-1 [Williams and Nayak, 1997] and other research on planning via symbolic model checking [Cimatti and Roveri, 1999]. In the case of Burton our system improves on that work by relaxing a number of restricting assumptions. For instance, Burton required the absence of causal cycles (feedback), no two transitions within a component can be simultaneously enabled, and that each transition must have a control variable in its precondition. MEXEC has none of these restrictions. On the other hand, our system can only plan n steps ahead where Burton did not have that limitation. Similarly, the work using symbolic model checking lacked the n-step restriction, but it compiled out a universal plan for a particular target state. Our system uses the same compiled structure to determine how to reach any target state within n steps of the current state.

7 Conclusions

This paper presented the MEXEC system, a knowledge-compilation based approach to implementing an offline domain compiler that enables embedded hard real-time diagnosis and reconfiguration planning for more robust system commanding. This system also enables feedback reasoning by virtue of global analysis during compilation.

Acknowledgements

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The author would also like to thank Alan Oursland, Seung Chung, Adnan Darwiche, Daniel Dvorak, and Mitch Ingham for discussions contributing to this effort.

References


