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Abstract. The HOCI catalytic cycle is an efficient ozone
loss mechanism in the lower mid-latitude stratosphere. We
use a diurnal steady-state photochemical model to calculate
profiles of HOCI for conditions encountered by a number
of high-altitude balloon flights. To assess how well this
model represents ozone loss by the HOCI cycle, we
compare our calculations of HOCI and its precursors ClO
and HO, with measurements obtained by an FTIR solar
absorption spectrometer (MkIV), a far-infrared emission
spectrometer (FIRS-2), and a submillimeterwave limb
sounder (SLS). We then evaluate these comparisons in light
of a number of recent laboratory studies of the main
formation mechanism of HOCI, the reaction of ClO + HO,.
Those studies measured both the reaction rate constant and
the quantum yield for a second product pathway, formation
of HCL.

The HOCI catalytic cycle,

ClO + HO, - HOCL + O,
HOC1 + hv - OH +Cl
Cl+ 05 - ClO+0,
OH + O, - HO, + 0O,
Net: 20; - 30,

is one of the main contributors to ozone loss in the lower
midlatitude stratosphere.

To quantify this contribution, we need to know the rate
constant, k, for the rate-limiting step, reaction of CIO
with HO; to form HOCI and O,. This reaction is also the
main HOCI production mechanism. Three recent laboratory
studies (Knight et al., 2000; Nickolaisen et al., 2000;
Laszlo et al., unpublished) caused the JPL 2002 data
evaluation panel to effectively halve their previous
recommendation for this rate constant for temperatures
relevant to the lower stratosphere. These new studies also
resulted in an increase in the uncertainty of the value of the
rate constant.

In light of the disagreement among the various laboratory
measurements of k, as well as the importance of k to ozone
loss in the lower stratosphere, we use a photochemical
model to calculate HOCI vertical profiles and then compare
these profiles to remote sensing measurements of HOCI
obtained with two instruments. We explore how the choice

of rate constant affects the agreement between measured
and modeled HOCl. We also compare measured and
modeled results for the HOCI precursors, HO, and ClO,
measured with FIRS-2 and a submillimeterwave limb
sounder (SLS), respectively. We then consider the
contribution of the HOCI cycle to ozone loss and its
sensitivity to the choice of rate constant.

We use a 24-hour steady-state box model consisting of
about 200 photochemical reactions (Osterman et al., 1997,
Sen et al., 1998), which assumes that production and loss
rates for each species are equal when integrated over a
24-hour period. Thus each species is allowed its full
diurnal variation. Model inputs consist of profiles of
temperature, pressure, ozone, methane, water, carbon
monoxide, NOy, Cly, Bry, and aerosol surface area.
Depending on the particular balloon flight, these model
inputs are either directly measured or inferred from
measurements by well established tracer relations.

For our model runs, we consider three specific HOCI
formation rate constants:

1) JPL 2002 (slowest k),
2) JPL 2000 (intermediate k),
3) Stimpfle et al. 1979 (fastest k).

MKIV measures solar occultation in the region 1.8 to 15.4
micron. Spectra are collected for a series of regularly
spaced tangent heights below the height of the balloon
during either sunrise or sunset. These spectra are then used
to simultaneously retrieve vertical profiles of many species,
including HOCL.

FIRS-2 measures atmospheric thermal emission in the
region 14 to 125 micron. Similarly to MkIV, spectra are
collected for a series of regularly spaced tangent heights
below the height of the balloon. However, rather than being
restricted to sunrise and sunset, the spectra can be taken at
any time of the day or night.

We find that although we can use our photochemical model
to fit both sets of HOCI data, we can do so only by using
different values for the rate constant for HOCI formation.
MKIV measurements agree best with model runs that use
the slowest rate constant, JPL 2002, while FIRS-2
measurements agree best with model runs that use the
fastest rate constant (Stimpfle et al. 1979).



We explore the validity of the measured HOCI profiles by
each instrument. Although the HOCI spectral region that
FIRS-2 detects is stronger than that detected by MKIV,
MKIV compensates by having a much brighter light source,
the sun, as compared with the thermal emission measured
by FIRS-2. And although FIRS-2 can measure HOCI at
times of day when HOCI is at its diurnal maximum, while
MKIV is restricted to sunrise or sunset when HOCI is at a
minimum, MkKIV compensates by measuring absorption
along a much longer path length.

Our present state of knowledge is that the FIRS-2
observations of HOCI are most consistent with the fastest
rate constant (Stimpfle et al., 1979) while the MkIV
observations of HOCI are most consistent with the
considerably slower recommendation for k given by JPL
2002. This discrepancy even occurs for data collected by
the two instruments when they flew on the same balloon,
and is therefore most likely not explained by either
atmospheric variability or details of the modeling approach.
It is therefore unclear which value of the rate constant for
HOCI formation is most consistent with atmospheric
observations of HOCl. Owing to the importance of this rate
constant to our overall understanding of stratospheric
ozone, this issue requires further study, both in the
laboratory and with additional measurements of HOCI
profiles.
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Background

* HOCI cycle is one of the primary
halogen mechanisms for ozone loss
in the lower midlatitude stratosphere
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» Problem: Large discrepancy in laboratory measurements of rate-limiting step

cio + Ho,*> Hocl + 0,

JPL 2002 revision (based on 3 additional studies greatly

differing in bath absolute value and lempersture dependence)
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JPL 2000 recommendation (based on 3 studics)
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Observed and Modeled HOCI Profiles
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We find:  « Modeled HOCL is sensitive to choice of k o Tome oy

* FIRS-2 observations: show poor agreement with current JPL 2002 (slow k)
show best agreement with JPL 2000 and Stimpfle (fast k)

MKIV Observations:
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» Again, modeled HOClI is sensitive to choice of k

* MKIV observations: show best agreement with current JPL 2002 (slow k)
however, display larger error bars than FIRS-2

Measured and Modeled Precursor Profiles
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« Our approach: use constrained photochemical box model to calculate HOC] for
conditions of balloon-borne observations by two instruments, FIRS-2 and MkIV
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Important point:

FIRS-2 data has higher signal-
to-noise ratio than MkIV
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