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Introduction

• Previously, electronics on Mars mission rovers have 
been centrally enclosed in a “warm electronics box”
(WEB). 

• A distributed, non-heated architecture outside the WEB 
is being considered for MSL and will have to survive in 
120ºC to 85ºC for 2010 cycles.

Typical Mil-Spec rating: -55 °C to 125°C for a few hundred cycles.

• Thermally induced fatigue due to CTE mismatches and 
materials property transitions, and the low temperature 
environment are high risk potential failure modes. 
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Background

• Extreme low temperature, fatigue conditions failure modes:
Martensitic phase transformation between the phases within the SnPb
solder.

• SnPb solder has the same unit cell structures as austenite (f.c.c.)- α/ Pb-phase 
and martensite (b.c.t)-β/ Sn-rich phase [1]

Under low temperature conditions below -110ºC, Sn phase becomes brittle 
[2]. 

• Intermetallic embrittlement of solder joints 
Cracks can occur in the intermetallic or at the interfaces 
Shear stresses due to CTE mismatch and delta T 
Fatigue cracks were found underneath surface mount leads on Thin Small 
Outline Packages (TSOPs) under thermal shock conditions [3]. 
Intermetallic compounds in solders are typically more brittle than the bulk 
material [2,4,5].
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Packaging Materials selection 

• Connector:
37- pin Nanonics Dualobe® connector 
(nano-connector) with Sn60Pb40 finish 
Selected as a part with standard finish.

• Solder:
In80Pb15Ag5 (Indalloy #2) 
Selected for thermal fatigue resistance 
and better wetting to Au.

• Coating:
Dow Q1 4939 1:10 (silicone) 
Selected for its high compliance and 
function as a good moisture barrier.  

• Substrate:
Polyimide printed wiring board (PWB
Selected for its space heritage and 
advantageous material properties as an 
organic.
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Test vehicle design, assembly, testing  

• Design:
8- layer polyimide PWB had a thickness of 1.60 mm +/- 0.127 mm.  
Au plating (1.016-1.524 μm) at 99.97% purity with a Ni underplate (2.54 – 5.08 μm) per SAE-
AMS-QQ-N-290 Class 2, over a top Cu layer (~107 μm).  

• Assembly:
Leads and Au pads were pre-tinned with In80Pb15Ag5 solder and Indalloy Tacflux 012 RMA 
flux 
PWBs were cleaned with ethyl alcohol and brushed carefully.  
Dow Q1-4939 1:10 silicone coating was applied and cured at 80°C for 4 hours.  
Continuity measurements were taken before and after conformal coating.   

• Testing:
Environmental test chamber, Tenney Model T6C-LN2, was used
Each cycle, programmed between -130°C to 92°C, averaged a 5°C/minute ramp rate. 
The test vehicles were thermal cycled between -120°C to 85°C and held at each 
temperature for at least 10 minutes. 
Nano-connectors were continuously and periodically manually verified for functionality 
every 250-300 cycles. 
High resistance values or infinity indicating electrical opens were defined as failures. 
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Flow of Test Vehicle Experiment

Remove TVs
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~250 cycles until 2100+ cycles
and every 100 cycles thereafter
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Results and Discussion-1

• Between 638-1431 cycles 13 out 
of 1110 lead contacts on 4 out of 
30 nano-connectors failed.

• First failures occurred between 
638 – 863 cycles.  

• Optical and SEM results have 
indicated that lead lifting was the 
cause of the open.  

• Root cause of failure was due to 
micro-cracking. 

• Failure Modes:
Martensitic phase transformation, 
brittle nature of Sn phase, and 
intermetallic embrittlement
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Results and Discussion-2
• Crack initiation site at the 

Sn60Pb40 lead finish and the 
In80Pb15Ag5 solder interface (at 
least one case) 

• Two failure modes were crack 
propagation and separation at the 
interface.

• Martensitic phase transformation 
which resulted in a Sn-rich phase 
at low temperatures down to -
120°C.  

• Local stresses and volume 
changes within the microstructure 
due to phase transformation of 
the Sn in the SnPb phase (f.c.c) to 
a Sn-rich phase β (b.c.t) 

• Loss of ductility of the Sn phase.
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Results and Discussion-3

• Secondary crack propagated at the 
In80Pb15Ag5 solder and PWB 
interface.  

• Fatigue failure occurred due to 
fatigue stress and intermetallic
embrittlement.  

• Repetitive thermal cycling caused 
cyclic strains in the solder joint 

• Δ T = 205 °C
• BeCu lead- 16.7 ppm/°C [6]
• Polyimide PWB- 16.50 ppm/°C 

(measured in the x, y- dir.) [7]
• In80Pb15Ag5 solder- 28 ppm/C [8] 

NEXT PAGE
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Results and Discussion-4

• Spot Scans- 30keV, 10.10 kx, and 
a working distance of 12mm.  

7 EDS Spectra (ZAF correction 
factor) 20 second spot scans since 
In and Sn are convoluted

• Dot map- 10 keV, 10 kx
8 micro-seconds time constant for 
14 minutes.

• In, Ag, and Sn (Lα)  
• Au and Pb (M α) 
• Ni, Cu (K α)

Note- rotated 90 °

Au/ Ni / Cu 

Plating

NEXT PAGE

In80Pb15Ag5
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Results and Discussion-4

Spot Intermetallic
Compound

1 InxPbySnz

2 InxPbySnz

3 InxPbySnz

4 InxPby

5 InxPby

6 InwPbxAuySnz

7 InxAuySnz

Au      Ni  Cu 

Plating

In80Pb15Ag5

Solder
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Results and Discussion-5

Location Intermetallic Compound
Region A InxAgySnz

Region B & Spot #7 InxAuySnz

Region C & Spot #6 InwPbxAuySnz

Region D Pb area
Region E & Spot #1 InxPbySnz

• Intermetallics at spot location #2 and 3 are also shown in the same areas of the dot map.  
• Sn may have formed with InxPby found in the EDS spectra on spots #4 and #5, or it may 

be unlikely since In and Sn are convoluted on the dot map.   
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Results and Discussion-6

B

C

Cu
Ni

Sn
Au

Location Estimated
Intermetallic
Compound

Region B Au-Sn complex

Region C Au-Sn complex

*Note- Left side has a higher concentration of Sn

Right side has a higher concentration of Au



3/14/2006Page 16

Results and Discussion-7

• 30 kev, Mag. of 5kx

Spot Intermetallic
Compound

8 InxAgy

9 InxPbySnz
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Conclusions

• Nano-connector leads with Sn60Pb40 finish soldered to 
polyimide PWB with In80Pb15Ag5 failed due to lead lifting 
between 638 – 863 cycles. 

• Primary crack propagation occurred at the lead finish near the 
heel which is the highest stress location, and secondary crack 
propagation at the solder/plating interface.   

• Crack initiation occurred in the Sn-rich phase at the Sn60Pb40 
lead finish, due to the martensitic phase transformation and 
brittle nature of Sn at low temperatures.  

• The failure mode at the In80Pb15Ag5 bulk solder and PWB 
occurred due to cracking through the brittle intermetallic
compounds.

• Sn is integral in intermetallic formation and likely the brittle 
nature of the Sn-phase caused brittle crack growth.
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Additional Current Work

• A more detailed intermetallic analysis of the Sn60Pb40 
lead finish is recommended for future work in order to 
study and confirm the Sn phase involved in the crack 
initiation site. 

• Inspect for possible SnPb grain coarsening as a 
contributing failure mode.

• Thermal Cycle and study the survivability of nano-
connectors with Ni/Au endcap finish and In80Pb15Ag5 
solder

• Studying the survivability of other components on the 
test vehicle boards, e.g. resistors with Ni/Au endcap
finish and In80Pb15Ag5 solder, and MOSFETS with 
heavy Al wire bonds
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