Low Temperature Thermal Cycle Survivability and Reliability Study for Brushless Motor Drive Electronics(#1360)

Carissa D. Tudryn³, Benjamin Blalock⁴, Gary Burke³, Yuan Chen³, Scott Cozy³, Reza Ghaffarian³, Don Hunter³, Michael Johnson³, Elizabeth Kolawa³, Mohammad Mojarradi³, Don Schatzel³, Andrew Shapiro³

³California Institute of Technology, Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
818-354-0846
Carissa.D.Tudryn@jpl.nasa.gov

⁴Department of Electrical and Computer Engineering, University of Tennessee

March X, 2006

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Outline

• Introduction
 ■ Current capabilities
 ■ Needed technologies

• Electronic Packaging:
 ■ Selection of materials and assembly processes
 ■ Failure analysis

• Electronics components:
 ■ Low temperature testing
 ■ Reliability at low temperatures
 ■ Development of new components

• Electronics motor drive assembly
• Conclusions
• Acknowledgements
Current Technology Capabilities

• Currently used drive electronics for motors and actuators requires thermal control for entire mission life
 ■ Space rated electronics functional temperature range -55°C to +125°C vs Mars environment -120°C to +20°C

• Motor drive electronics is typically located in a central location of the spacecraft/rover and a large quantities of wires (up to 20 per actuator) must be cabled from the central location to each actuator
 ■ MER has about 40 actuators, MSL will need about the same number

• Actuators rotary life capabilities that are inadequate for planned future rover missions
 ■ Brush motors have limited life on Mars and very little life in vacuum
 ■ Brushless motors have no life issues in vacuum or on Mars
Objectives

- Develop the technologies to build a flight actuator that will:
 - Survive and function in the Martian environment without the need for thermal control:
 - Operating range: -120°C to +85 °C
 - Total Life Test Cycles: 2010 (3X) from -120°C to +85 °C
 - Functionally tested to -135°C to establish reliability margin

- Extend the mechanical life of a mission more than a factor of 20 beyond current actuator capabilities:
 - A roving range beyond 100 km
Needed Technologies

- Electronic packaging - selection of materials and assembly techniques for thermal cycling survivability

- Electronics - parts design, fabrication, and characterization for operation down to -120 C

- Electro-mechanical - motor and gearbox for reliable, long life operation
Technologies

• Electronics:
 ■ Understand how existing electronic parts behave, operate, and change over temperature
 ■ Extend mission assurance and reliability requirements for electronics down to temperatures of -120°C and lower
 ■ Understand failure mechanisms of electronic parts at these temperatures
 ■ Design, fabricate and qualify electronic parts (to replace parts that do not function as required at low temperatures)
Technologies

• Electronic packaging:
 ■ Find acceptable material combinations that will survive the required number of thermal cycles in the -120C to +85C temperature range
 ■ Understand failure mechanisms of electronic packaging over the required number and range of thermal cycles and their mitigation
 ■ Understand manufacturing issues associated with the selected packaging technology
Technologies

• Electro-mechanical:
 ■ Determine what standard motor fabrication methods will survive the environmental thermal cycling
 ■ Determine the material combinations for gears, bearings, and lubrication that will provide the required rotary life and strength
 ■ Reduce the mass of a standard actuator assembly by 30%
Electronic Packaging
Selection of packaging technology

Selected Chip-on-Board:
- Minimal number of interfaces and interconnects
- Stress relief in wire bonds
- Good density
Selection of packaging materials combinations - Test Vehicle 1 (TV1)

<table>
<thead>
<tr>
<th>Materials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Polyimide, LTCC, Alumina</td>
</tr>
<tr>
<td>Encapsulant</td>
<td>Epoxy(Hysol 4402), Silicone based, Parylene</td>
</tr>
<tr>
<td>Die Attach</td>
<td>Epoxy, Solder (In), UV Curable Silicone</td>
</tr>
<tr>
<td>Wire</td>
<td>Au standard</td>
</tr>
</tbody>
</table>

- Test vehicle one (TV1) represented different die sizes, wire bonds, via chains, and board/die attach/conformal coat material combinations
 - 270 test vehicles covering 27 material combinations
- TV1 testing completed with thermal cycles up to and beyond 2000
Environmental Testing

Tenney Model T6C-LN2
Environmental test chamber

Thermocouple Cycling Data

Continuous Monitoring Set-up
TV1 Test Results

Breaks

TV1: 5 Failure Types

- Break at the wedge bond on the substrate

Table: Breaks at the Wedge Bond on the Substrate

<table>
<thead>
<tr>
<th>SUBSTRATE TYPE</th>
<th>CYCLES</th>
<th>S/N</th>
<th>TOTAL CYCLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYIMIDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABLEBOND 967-1</td>
<td></td>
<td></td>
<td>2865</td>
</tr>
<tr>
<td>FP4402</td>
<td>-3</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>DOW</td>
<td>-5</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>PARYLENE</td>
<td>-7</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>FP4402</td>
<td>-8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>DOW</td>
<td>-9</td>
<td>2295-2665</td>
<td>2295-2665</td>
</tr>
<tr>
<td>ZYMET TC-611</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP4402</td>
<td>-4</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>DOW</td>
<td>-5</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>PARYLENE</td>
<td>-6</td>
<td>3247</td>
<td>3247</td>
</tr>
<tr>
<td>ZYMET TC-611</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP4402</td>
<td>-4</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>DOW</td>
<td>-5</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>PARYLENE</td>
<td>-6</td>
<td>3247</td>
<td>3247</td>
</tr>
<tr>
<td>INDIUM 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP4402</td>
<td>-7</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>DOW</td>
<td>-8</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>PARYLENE</td>
<td>-9</td>
<td>2295-2665</td>
<td>2295-2665</td>
</tr>
</tbody>
</table>
Selection of materials and assembly processes - TV2

• TV2 incorporated lessons learned from TV1 - used surviving material combination from TV1
• Three types of substrate, three different die attach, and two encapsulating coating
 • 180 different test vehicles assembled, 10 of each configuration
• Each TV2 assembly included two International Rectifier FET die, 4 surface mount discrete components, one 37 pin nano-connector, blind and buried vias, and high current bifurcated terminals.

Assembled TV2 test vehicle
TV2 test results

Four failure types were observed:

- 20 mil heavy Al wire bond lifting from the die
- Nano-connector lead lifting from the Au pad on the substrate
- Resistors with SnPbAg endcap finish: solder cracking
- Resistors with SnPb endcap finish: epoxy die attach failure

Table

<table>
<thead>
<tr>
<th>SERIAL NO</th>
<th>VIA</th>
<th>MOSFET DIE</th>
<th>RESISTORS ATTACH</th>
<th>CONN. ATTACH</th>
<th>CONN. STAKING</th>
<th>COAT.</th>
<th>TOTAL CYCLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>P001-010</td>
<td>0.3</td>
<td>Ab 967-1</td>
<td>20 mil-638-863</td>
<td>Ab 967-1</td>
<td>In80</td>
<td>Dow</td>
<td>738-1531</td>
</tr>
<tr>
<td>P011-020</td>
<td>0.3</td>
<td>Ab 967-1</td>
<td>20 mil-863-1182</td>
<td>Ab 967-1</td>
<td>In80</td>
<td>Poly C</td>
<td>1431-1918</td>
</tr>
<tr>
<td>P021-030</td>
<td>0.3</td>
<td>In80</td>
<td>20 mil-638-863</td>
<td>In80</td>
<td>Sn 63</td>
<td>Zymet</td>
<td>1182-2778</td>
</tr>
<tr>
<td>P031-040</td>
<td>0.3</td>
<td>In80</td>
<td>20 mil-638-863</td>
<td>In80</td>
<td>Sn 63</td>
<td>Zymet</td>
<td>638-2778</td>
</tr>
<tr>
<td>P041-050</td>
<td>0.3</td>
<td>Zy 6000.2, 5 mil</td>
<td>In80</td>
<td>Zy 6000.2, 5 mil</td>
<td>Sn 63</td>
<td>Zymet</td>
<td>638-2678</td>
</tr>
<tr>
<td>P051-060</td>
<td>0.3</td>
<td>Zy 6000.2, 5 mil</td>
<td>In80</td>
<td>Zy 6000.2, 5 mil</td>
<td>Sn 63</td>
<td>Zymet</td>
<td>2778</td>
</tr>
</tbody>
</table>

* SnPb finish
Au finish

Material/process consideration

- **Survived**
TV2 test results - failure analysis

20 mil heavy Al wire bond lifting

Nano-connector lead lifting

Resistor Cracking
General packaging recommendations

In order to survive 2000 cycles in -120 C to +85 C following materials and assembly methods are

Recommended:
- Indium solder for die attach of silicon die with Au metallization
- In80Pb15Ag5 die attach on MOSFET with Ag backside metallization
- Epoxy: 84-1
- Conformal Coating: Parylene C
- Finish: Ni/Au finish for passive components
- Vias: 20 mil dia. through-hole and blind vias
- Heavy Al wire: \(\leq 15 \) mil heavy Al wire bonds on die
- \(\leq 20 \) mil heavy Al wire on substrate
- Bus Wire: Silver plated

Not recommended:
- Encapsulant: Uralanes, Solithanes, Epoxies (FP4402), Silicones
- Attach materials: Sn-Pb solder, Ablebond 967-1, Zymet TC-611, Zymet 6000.2, attach materials
- Finish: Sn-Pb component finish
- Greater than 15 mil dia. Al wire on die
Electronic Packaging - Conclusions

• Chip on board selected as the most promising packaging method for surviving a large number of wide temperature (-120 C to +85 C) thermal cycles

• Combinations of materials (substrate, die attach, encapsulant) had to be selected experimentally due to the lack of material properties data at low temperatures

• Selected packaging methodology, materials, and assembly techniques can be used in future for all electronic components that require survivability in Mars environment
Electronics
Electronics - Challenge

- Need electronic components that can reliably operate in the -120°C to +85°C temperature range
- Commercial Off The Shelf analog electronic components (power transistors, diodes, amplifiers, ADC’s…) are designed and tested down to –55°C. These parts have unknown electrical characteristics at temperatures lower than –55°C
- Complex programmable digital circuits like Field Programmable Gate Arrays (FPGAs) or microprocessors may have issues at low temperature related to clock tree, on board RAM, setup and hold times etc.
- The reliability of both analog and digital commercial CMOS components at lower than –55°C is generally unknown
Electronics - Solution

• Test and develop electronic components that can reliably operate between –120C and 85C:
 • Conduct electronic performance characterization at low temperatures (-120C) of all electronics components (transistors, amplifiers, ADC’s, operational amplifiers etc., passive components) needed for motor drive electronics
 • Parametric testing down to -150 C
 • For parts that perform adequately, evaluate long term reliability test (hot carrier injection)
 • 1000 hrs soak test at -150 C
 • In case needed parts are not available and are not performing as required at low temperatures, develop technology files that enables design and fabrication of IC’s that can operate between –120C and 85C
 • Design, fabrication and qualification of operational amplifier
Electronics - parametric testing at low temperatures (example)

Test Block diagram

- **Commercial Actel FPGA (A54SX32A) results:**
 1. Digital logic functioned down to –165°C
 2. Power cycling functioned to -165°C

- **Commercial Xilinx FPGA (XCVR600) results:**
 1. Digital logic (program load at 0°C) functioned down to –165°C
 2. Power cycling, initialization current increased from 10 mA at 0°C to 800 mA at –40°C.
Electronics - 1000 hrs soak test at low temperatures (example)

- 1000 hrs cold soak test of the COTS:
 - Soak test temperature –150°C
 - COTS mounted on test boards
 - Continuous power and signals applied to COTS
 - Electrical characterization performed every 200 hrs

1000 Hrs Test Oven & Setup
Electronics - development of operational amplifier

- Essential part in motor drive electronics
- Designed to be LMC6484 footprint compatible
- Simulated to operate –180C to 80C
- Fabricated at Honeywell, space rated process
- Established qualification process
Electronics - Conclusions

• Digital electronics components perform adequately at low temperatures (-120 C)
• Testing of analog components gave mixed results - components based on bipolar transistors are not suitable for use at low temperatures due to the loss of gain
• Design methodology for low temperature components was developed
• Some components, operational amplifiers and voltage reference, were developed and optimized for low temperature performance
• Solution for all electronics components is now available for motor drive electronics operating in Mars environment
Integrated Motor Drive Electronics
Motor drive assembly

INTEGRATED MDE WITH MOTOR AND
SYSTEM INTERFACES

- Encoder I/F Wires (28 AWG)
 From A1 PWBA
 (Gate Array)

- System Pwr Wires (18 AWG)
 to A7 PWBA
 (Pass-Thru Bd)

- Hall Sensor Wires (24AWG)
 From A7 PWBA
 (Pass-thru Bd)

- Terminal Blk for Motor
 Hall Sensor Wirers

- Phase Wires (18 AWG)
 From A7 PWBA
 (Motor Driver Electronics)

- Loads I/F Wires (26 AWG)
 From A7 PWBA
 (Motor Driver Electronics)

- Resolver I/F Wires (28 AWG)
 From A1 PWBA
 (Gate Array)

- System I/F Wires (28AWG)
 From A4 PWBA
 (Com_Interface)

- Representative Motor Body
 (Mini Dual Drive Shown)

- Terminal Blk for Motor
 Coil Wirers

- System Pwr Wires (18 AWG)
 to A7 PWBA
 (Pass-Thru Bd)
Benefits of Technology Development and Conclusions

• Current motor design enables rover missions to travel over much greater expanse of Martian surface (large rotary life of brushless dc motor)

• Results in significantly reduced system cabling, saving system mass, design cost, and ATLO integration time and cost (only with electronics at the motor)

• Reduced system cabling to actuators on extremities reduces a significant risk associated with flexing cabling to reach those actuators
Benefits of Technology Development and Conclusions

- No system power is required to thermally control actuators or their drive electronics located on rover extremities such as mobility or robotic arm eliminating special thermal hardware for actuators on rover extremities
- Modular design allows the use of a single electronic design at all locations significantly reducing the quantities required for spare hardware
- Modular design can be used for all future Mars surface and orbital missions
Acknowledgements

• This work was sponsored by the Mars Focused Technology Program, NASA. The authors would like to especially thank Samad Hayati and Suraphol (Gabriel) Udomkesmalee for their support.

• This study was successful due to the help of several people who contributed a lot of time, effort, thought, and hardwork. Special recognition goes out to Anarosa Arreola, Tosh Hatake, Chuck Derksen, Kirk Bonner, Atul Mehta, Ken Evans, Ron Ruiz, Francisco Coronel at MEFAS, Greg C. Levanas, James Borders, Kristan D. Ellis, Albert R. Morgan, Thomas McCarthy, Anthony J. Ganino, and Dr. Mehrdad Zomorrodi, Mike Shakar and Weidong Zhuang at International Rectifier.

• This effort greatly benefited from collaboration with packaging group (Dr Sharon Ling) at Applied Physics Laboratory - John Hopkins University