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Introduction

• The problem of controlling and maintaining precise formation of
spacecraft is a difficult one.
– For collaborative observations it requires accurate actuation and sensing

(or knowledge and control) by the system.
– Although, with the combination of accurate sensors and knowledge it is

not required to control the separation of the spacecraft, it is valuable to
understand what are the controls.

• Our research focus is on determining the dynamical force
necessary to control a formation precisely to some prescribed set of
constraints around any non-spherical rotating body.

• We accomplish this by employing a general constraint based
control methodology

• We assume perfect actuation (i.e., no misalignment or thrusting error)
and knowledge (i.e., we know exactly where we are).
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Introduction

• Benefits: (1) allows for the understanding of the system from a
macro view, (2) method is simple to implement and exact (assuming
perfect knowledge and control)

• Examples will be given for 2 different formation types, a 2-space-
craft formation and a 4-spacecraft formation

• Objective is to keep the spacecraft in a very precise formation and
analyze its dynamics

• Note, we do not try to optimize the configuration, or try optimize the
number of spacecraft to best provide ground / space converge, but
focus on the control required for a given formation.

• Not necessary trying to replace other control methods, but to
complement and improve existing control methods.
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Theory: EOM for Constrained System

• In general, the equations of motion of a system that is perturbed from its
natural state has the form of

where FC is the perturbing or constraint force (Lagrange Multiplier
approach).

• The task is to find FC and there are a number of ways to solve for it
depending on problem.  Analytically, the problem is solved by the
various form of the Fundamental Equation.  The most famous is
probably the concept of Virtual Work or the use of Lagrange multipliers.

• We apply here another form of the Fundamental Equation of Lagrangian
mechanics, which we will call “the Fundamental Equation”, based on
Gauss’s  principle of Least Constraint (Udwadia and Kalaba [1991])

€ 

M˙ ̇ x = F + FC
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Theory: EOM for Constrained System II

• Udwadia’s and Kalaba’s form of the Fundamental Equation:

F, a = free-response force and acceleration
M = diagonal mass matrix
A = from the constraint equation (will be discussed later)
b = from the constraint equation (will be discussed later)
( )+ = pseudo-inverse

• All constraints are solved in a least square sense analytically at
every time step

€ 

M˙ ̇ x = F + M1/ 2 AM−1/ 2( )
+

b − Aa( )

Acceleration
Error Signal

 Weighted
Feedback Gain
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Formation Flying Example
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Unconstrained Motion

• Spacecraft in a non-uniform gravity field
– Gravitational Potential

R = body-centered reference radius

r = geocentric distance
φ  = latitude of the spacecraft

λ = longitude

Pn(sinφ) = Legendre Polynomial of degree n in sinφ

Pn
m(sinφ) = Legendre function of the first kind

– Unconstrained Acceleration

€ 
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Unconstrained Motion II

• Spacecraft in a non-uniform gravity field
– Body Parameters

– Orbit Parameters

Mars Physical Parameter Value

Reference (Equator) Radius 3,397 km
GM 42,828.380415705753 km3/s2

Rotation Rate 7.08823595918567E-05 rad/s
Gravity Field 20 x 20

J2 (normalized) 8.74554802878902E-04
J3 (normalized) 1.18743368538763E-05

Orbit Parameter Value

Semi-major Axis, a 3,775 km
Eccentricity, e 0

Inclination, i 80°
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Constraints

• Constraints applied between the spacecraft
– Relative Distance Constraints

– Relative Radial Distance Constraints

• For precision we use Baumgarte’s stabilization technique

• Formation behaves as a “virtual” rigid body

€ 

φ = L2 − xi − x j( )
2

+ yi − y j( )
2

+ zi − z j( )
2

= 0

€ 

ri
2 − rj

2 = c

€ 

˙ ̇ φ +α ˙ φ + βφ = 0
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Relative Distance Constraints

• Circular obits around a body

Two-Spacecraft Formation Four-Spacecraft Formation

To Planet

Direction
of Motion

To Planet

Direction
of Motion

€ 

φ = L2 − xi − x j( )
2

+ yi − y j( )
2

+ zi − z j( )
2

= 0

where L is a constant
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Relative Distance Constraints

• Circular obits around a body

Two-Spacecraft Formation Four-Spacecraft Formation

To Planet

Direction
of Motion

To Planet

Direction
of Motion

€ 

φ = L2 − xi − x j( )
2

+ yi − y j( )
2

+ zi − z j( )
2

= 0

where L is a constant
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Relative Radial Distance Constraints

ri rj

€ 

ri
2 − rj

2 = c
where c is a constant
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Finding A & b

€ 

ϕm x, ˙ x ,t( ) = 0

m constraints

• Example:

€ 

r1
2 − r2

2 = const.

€ 

−x1 −y1 −z1 x2 y2 z2[ ]˙ ̇ x = x1
2 + y1

2 + z1
2 − x2

2 − y2
2 − z2

2[ ]

Differentiate 
twice

bA

Differentiate twice for position constraints

Differentiate once for velocity constraints

€ 

A x, ˙ x ,t( )˙ ̇ x = b x, ˙ x ,t( )
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Two-Spacecraft Example: Stabilization

Without Stabilization

With Stabilization

• Relative Distance Between the 2 Spacecraft
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Two-Spacecraft Example: Simulation
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Four-Spacecraft Example: Simulation

Thrust: SC 1&3

Thrust: SC 2&4
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Four-Spacecraft Example: Pulsating

• Time-varying constraint of the form

€ 

L t( ) = L0 abs sin kt( )( ) +1[ ]
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Four-Spacecraft Example: Pulsating II

Circular Orbit
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Conclusion and Future Work

• Conclusion:
– Introduced and applied different approach to the control of

multiple spacecraft in precision formation flight
– Method is based on a new form of the fundamental equations of

motion for constrained system (Udwadia & Kalaba)
– Solutions are explicit and equations are simple to derive
– Good for analyzing and controlling multi-body systems
– See paper, AAS 06-122 for more details

• Future Work:
– Improve numerical implementation
– Add switching function to the thrusting
– Model errors and noise
– Compare method to existing method
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Theory: EOM for Constrained System III

• Gauss’s principle of Least Constraint states that of all possible
acceleration (including those that are non-physical) for the system,
the “actual” acceleration is one which minimizes the Gaussian

• Handling constraints
– Given a set of differentiable kinematic constraints

– We can differentiate Eq. (2) to be of the form

€ 

G = ˙ ̇ x − a( )T M ˙ ̇ x − a( )

€ 

φ x, ˙ x ,t( ) = 0

€ 

A x, ˙ x ,t( )˙ ̇ x = b x, ˙ x ,t( )

holonomic or
non-holonomic

constraints
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Theory: EOM for Constrained System IV

• Consider a system of n particles, then the free-response motion is

• Given a set of differentiable constraints

• We can differentiate (2) to be of the form

• The constraint force is found to be (next slide)

• Thus,

€ 

a = M−1F x, ˙ x ,t( )

€ 

φi x, ˙ x ,t( ) = 0

€ 

A x, ˙ x ,t( )˙ ̇ x = b x, ˙ x ,t( )

€ 

FC = M1/ 2 AM−1/ 2( )
+
b − Aa( )

€ 

M˙ ̇ x = F + FC

(1)

(2)

(3)

(4)

(5)


