Recent progress of visible light nulling interferometry and first 1 million null result

Edouard Schmidtlin¹, J. Kent Wallace¹, Rocco Samuele²
B. Martin Levine¹, Michael Shao¹

¹Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91007
²Northop Grumman Space Technology, Redondo Beach, CA 90278

Keywords: extra solar planet detection, interferometry, nulling, null ratio, optical path stabilization
Context of exo-planet detection

- The challenge is to observe a very faint planet near a bright star.
- The starlight needs to be cancelled. It is a contrast and resolution problem.
- The Inner Working Angle is the angle inside which direct detection of a planet is not possible. IWA = N*λ/D where N depends on the coronograph type.

- In the visible the ratio planet/star is 10E-9 (Jup) to 10E-10 (Earth), in the infrared it is about 1000 times easier.
- However the planet is brightest in visible.
- a null of 10E-7 corresponds to a contrast of 10E-10 @ 1 airy spot (λ/D).
- Very large telescopes are not needed:
 - For an Earth @10pc D~1.5m
 - For a Jupiter @10pc D~0.3m only.
Planet Detection with a Nulling Interferometer

- With just one aperture the star forms an Airy disk image (of size $2.44\frac{\lambda}{D}$).
- With 2 or more apertures the image is modulated by a fringe pattern of period $\frac{\lambda}{B}$ where B is the baseline between the pupils.
- The goal is to put the star on the null and the planet on the bright fringe.

- A nulling interferometer can be either
 - An array or 2 or more telescopes forming a baseline B
 - Or a single aperture telescope with a mask of 2 or more apertures downstream.
Achromatic Nulling Interferometer

A modified Mach-Zender to provide π achromatic null

- Single pupil input
- Symmetric design
- Preserves pupil orientation and polarization
- Pupil shear adjustable—variable null baseline
- Dielectric plates provide achromatic null

Typical OPD scan (BP=12%):

Log scale

Log scale

Log scale

Log scale

$I_{\text{monochr}} = \frac{I_0}{2} \left[1 - V \cos(kx) \right] = \frac{I_0}{2} \left[\varepsilon + (kx)^2 / 2 \right]

V = 1 - \varepsilon, \, \varepsilon \approx \theta, \, x \approx \theta$
Experimental implementation and setup photo

Older setup (used between RSI research years* until Dec04):
- rooftops arms ie 2 mirrors/arm (rooftop to decouple OPD/shear DOF)

- Choice of various sources (laser 638nm, filtered white light, etc)
- fiber input and output (using OAPs for achromaticity)
- in each arm: disp plates and shutters
- many ‘picomotors’ to move mirrors, piezzo in 1 arm to vary OPD
- matched Beam Splitters, all angles 14-15deg AOI, high symmetry
- detection with various photodetectors, or APD for weak white light

*Rotational Shearing Interferometer: Serabyn Appl Opt vol38,no34 1999
Need to adapt a DM in one arm, with low AOI, for upcoming projects
Layout modification needed: from 2 (rooftop) to 3 mirrors (W shape)
Will not change of the principle of nulling

⇒ Newer setup (mar05-sept05+):
-3 mirror nuller with W arms
-vacuum tank capability
-picomotors in and out of nuller
-longer OPD (~20inch/arm now)
-more isolation from ground
-better subnm OPD stability
-less heat devices near nuller
-many experimental fixes
-more automated control/software
First Million* null
laser $\lambda=633\text{nm}$, in air, manual

Other parameters: raw data (corrected improve 1.1x), no shear, 20mm diam beams, rate=25Hz, detection=Newport powermeter, zero OPD ‘surfaced manually’
*In this presentation we consider only average (typically 10pt @ 25Hz) values, not ‘transients’
Newer Million+* null plot
laser, $\lambda=633\text{nm}$, in air, semi automated

\Rightarrow 1M line easily crossed. Here about 1.2M* raw null, 1.4M* dark corrected null

*In this presentation we consider only average (typically 10pt @25Hz) values, not ‘transients’
Diagnosis of the 1.2M null

Many many factors can degrade a null. Two are easy to access:
- midfringe analysis/PSD => OPD noise
- i1/i2/i1 light trace => power unbalance

- 0.15% imbalance limits null to 2.8e-7
- 0.1 nm rms opd limits null to 2.5e-7
 - Sum of amplitude and phase errors => ~5e-7 versus 7e-7 measured.
- Possibly both amplitude and OPD stability to improve by 3~5x when chamber is pumped
- Current experiment could get 1~2e-7 nulls (1~2e10/airy spot)
- Third factor to fight could be polarization/angles
Limits of our current 1M null

what to improve to get to 2M…

(all other reasons solved)

1-OPD *noise* from combination of reasons
 - ground borne path: use efficient isolators
 - acoustic: need of vacuum (but drifts seen in all vac sessions)

2-*powermatching*: Power balance I_1/I_2 needs to be at 1% for 10K null (easy) and 0.1% level for 1M null (harder)
 - technique of mitigation of Airy spot positions on fiber core
 - recent investigation of thin wire occultator

3-*possibly angular/alignment/polarization* issues:
 - may need to align the AOI’s of optics (15deg) to arcminutes
 - attention to coatings, wedge values, wedge clocking, etc
Environmental conditions

At the 100K-1M level ambient noise/vibrations must be reduced such as Air Conditioning, computer fans, vac pumps, even conversations and street traffic…

- AAP can be removed with silence and 100% with vacuums
- GAP can be suppressed a lot (not 100%) with sorba isolators
- GVP can be reduced by floating the table and operating on evenings/weekends

Turbulence varies OPD slowly: remove heat devices and pump vacuum

Diagnosis tools: Midfringe/PSD analysis, fringe-o-phone (to diagnose local opto/mec instabilities and resonances)
Broadband null plots
Filtered white light ($\lambda=650\text{nm}$), in air, two polarizers, 1 disp plate (glass type) per arm

BP=5%
$\sim 120000:1$ null
after dark correction

BP=12%
$\sim 32000:1$ null
after dark correction

These 2 results using the ‘Old’ setup
Latest result: a 1M servo laser null

Average null ratio is 8.2e-7 ie 1.2M, over ~200s, after dark correction
Data obtained by R. Samuele and S. Fregoso on Sept 23rd, 2005

-Dithering cycle with right/center/left plateaux and span about <+/-10nm, rate~1Hz
-Null points plotted: 8 out of every 33 (duty cycle 25%)
-LabView environment
-Feedback on opd piston piezzo in one arm
-peak power 55uW
Conclusion and future Work

Using a modified Mach Zender interferometer as our nuller tesbed we have developed technologies and reached deep nulls needed for future NASA missions such as TPF, or PICTURE (an upcoming sounding rocket experiment):

- laser light (633nm): 1Million:1 null (average) or a little better
- broadband white light 120K:1 @ BP=5% and 32K:1 @ BP=12%
- Latest news: recently obtained 1M:1 servo null (laser)
- All this without pumping vacuum yet!

We are only 10x away from TPF’s goal of 10E-7. Using a combination of a fiber array and deformable mirror a null of 10E-7 would correspond to a contrast of 10E-10 (Δmag=25) at 1 Airy spot

Future plans:
- progress on deep laser nulling (goal of 2M soon, then eventually 10M)
- parallel effort on broadband (WL) nulling up to 20% (goal of 1M@5% soon)
- introduce certain parameters and devices for upcoming experiments such as shear, DM modulation, fiber array filtering, downstream addition of calibration system, more remote control, more end to end system
Conclusion and future Work

Mettre equa cos avec phi et esp

Mettre graph des 3 nulls

Dessin spider

Faire repete