
PatchLink Unix Agent
Verification and Assessment

David Gilliam, John Powell:
Jet Propulsion Lab (JPL)

Matt Bishop: University of California at Davis
Chris Andrew, Sameer Jog:

PatchLink Corporation

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

2

Information Technology Security

Acknowledgement
This research was carried out at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration

The work was sponsored by the NASA Office of
Safety and Mission Assurance under the Software
Assurance Research Program lead by the NASA
Software IV&V Facility
This activity is managed locally at JPL through the
Assurance and Technology Program Office

This research was conducted with the
cooperation of PatchLink Corporation under a
Non-Disclosure Agreement (NDA)

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

3

Information Technology Security

Agenda
Introduction
Software Assurance
Verification Activities

Model-Based Verification of Specifications
Property-Based Testing of Software

Verification Results
PatchLink Response
Non-Root Unix Agent
Questions

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

4

Information Technology Security

Introduction
PatchLink and Unix Systems

Unix systems typically run enterprise services
and critical operations at JPL

Current released version is 6.0067
Requires Sun JRE 1.2.2 or higher
Initially Installs and runs as root privileged
NICE value is 10 but can be changed
If SSL Used, use certificates from known root
authorities such as Verisign

Viewed by JPL as a potential security risk area
– especially for flight operations systems

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

5

Information Technology Security

Introduction (Cont.)
JPL Request for Security Verification of Agent

Critical flight operations systems
Inter connectivity between systems via NFS

NASA request for verification and results
NASA CIO to be informed of results
Other NASA Centers that are heavy Unix
environments request for JPL verification results

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

6

Information Technology Security

Introduction (Cont.)
PatchLink Response to Request

Acceptance of JPL team with NDA
Participation by PatchLink in verification
activities
PatchLink made changes to Unix agent based
on verification results

Goal: Verify Security of Unix Agent
Verify critical security properties
Agent does not pose a security risk to JPL,
especially to its Flight Operations Systems

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

7

Information Technology Security

Introduction (Cont.)
Final Report on Verification Activities
Delivered

PatchLink Corporation
Provided response to verification findings
Provided information on issues uncovered

Jet Propulsion Lab (JPL) Management
NASA CIO and IV&V Center

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

8

Information Technology Security

Introduction (Cont.)

Software Assurance and Verification

FMF

PBT

JPL Verification
Activities

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

9

Information Technology Security

Software Assurance
Software Security Assurance Instruments

Formal Modeling
Stanford Research Institute: John Rushby -
PVS/SAL/ICS
Jet Propulsion Lab: John Powell – FMF/SPIN

Code Analysis
Klocwork – static code analyzer – excellent GUI
interface
DevPartner Security Checker – compile, runtime and
integrity analyzer for known security problems
CodeAssure – John Viega – code analyzer, but not
specifically built for security - generic
Property-Based Tester (PBT) – Matt Bishop, UC
Davis - dynamic & developed for security

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

10

Information Technology Security

Software Assurance (Cont.)
Penetration testing – scanners

Resources Required for Performing
Verification:

Specifications and Design Supplied to JPL by
PatchLink
JPL on-site at PatchLink with Engineers
Instruments to validate PL design and code

Model-Based Verification Flexible Modeling
Framework (FMF) – used with SPIN
Property-Based Tester (PBT)

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

11

Information Technology Security

Verification Activities
Time-frame for Verification

Pre-site visit
Modeling – one week for modeling preparation
Property-Based testing – one week for
preparation

On-site verification activities spanned one
week

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

12

Information Technology Security

Verification Activities (Cont.)
Security Properties Identified for Verification

18 security properties identified as critical
Subset of security properties
Focus on agent operations

Properties ranged from agent-server
communication to job/package acceptance and
installation processes

Agent Properties Results
1. The agent and server shall be capable of secure communication MBV - Verified to Hold

2. The agent and server shall have an identification that uniquely mutually associates them MBV - Verified to Hold

3. The agent and server shall authenticate to each other using their unique identification MBV – Verified - logically Implied by
1 and 2

4. The agent shall validate all packages that they are from its associated server MBV - Verified – logically Weaker
version of 3

5. The agent shall validate that the package is un-tampered (like using an MD5 checksum) MBV/PBT – Verified Logically

6. The agent shall recognize packages that do not complete their installation MBV - Verified to Hold

7. The agent shall have a recovery process for packages that have partial installation or
otherwise fail during installation

MBV - Verified to Hold

8. The agent shall run at low priority PBT – Verified to Hold

9. The agent shall recognize conflicts with other processes that generate high CPU
utilization

Verify by other means: Kernel function

10. The agent shall go to sleep when CPU utilization is high Verify by Other Means: Kernel function

11. The agent shall monitor activity for system resources Verify by Other Means: Kernel function

12. The agent shall recognize conflicts with use of JAVA resources Verify by Other Means: Kernel function

13. The agent shall go to sleep when it detects conflicts with JAVA resources Verify by Other Means: Kernel function

14. The agent shall only accept connections that it has initiated MBV/PBT - Verified to Hold

15. The agent shall have a network session time-out MBV - Verified to Hold

16. The agent shall have a package installation time-out MBV - Verified to Hold

17. The agent shall provide logging of all its events Verified by Other Means: Inspection

18. The agent shall be capable of running as non-root and maintain reporting capabilities Verify by Other Means

Key Unix Agent Security Properties

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

14

Information Technology Security

Model-Based Verification and the
Flexible Modeling Framework

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

15

Information Technology Security

Model-Based Verification
Model-Based Verification Requires Building a
State-Based Model of the System
Requires Identifying Properties To Be Verified
Performs Automated Checking of the Model
for Property Violations
Model Checkers Perform Exhaustive Search
of State Space

] J. R. Callahan, S. M. Easterbrook and T.
L. Montgomery, "Generating Test Oracles
via Model Checking," NASA/WVU
Software Research Lab, Fairmont, WV,
Technical Report # NASA-IVV-98-015,
1998

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

16

Information Technology Security

Model-Based Verification (Cont.)
The objective - verify a model of a system’s
security over its corresponding state space
(the subset of reachable states).
The Model Checker’s function - determine if a
given model of a system’s behavior satisfies
its security requirements
Models expressed in a suitable language
Properties expressed in suitable logic (e.g.
Linear Temporal Logic – LTL)
The goal is to find errors as opposed to
proving correctness

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

17

Information Technology Security

Model-Based Verification (Cont.)
State space is the set of total reachable system
states represented in the model
A given state consists of all variables in the model
and their associated values at a given point in time
Software model checkers explore all paths from a
start state by examining transitions to determine
reachability of a state that violates the property
When properties are violated, checker gives
counterexample and stops
Properties are verified as holding or not holding for
each transition
Does not obviate need for experts since
development of verification model is non-trivial

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

18

Information Technology Security

Model-Based Verification (Cont.)

ACD AD A = Potential Violation
ABC AB & AC A = Mitigation to A from ACD

A B C

AB BCAC

D

BD CD

ABCD

ABC ABD BCD

Violation

ACD

Violation

AD

Mitigation Mitigation

Mitigation
Mitigation

Violation

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

19

Information Technology Security

Model-Based Verification (Cont.)
Property 5: The agent shall validate that
the package is un-tampered

The formal property is:
It is always the case that

(if (Bad_Msg Received) then ((do not
Receive_Next_Msg) until (Bad_Msg Detected)))

The Linear Temporal Logic (LTL) property is:
□ ((Patch_Type==17) → ((Patch_Type==17) U

(Bad_Message==1)))

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

20

Information Technology Security

Model-Based Verification (Cont.)
SPIN Model-Checker Output for Property 5:
warning: for p.o. reduction to be valid the never claim must be stutter-invariant
(never claims generated from LTL formulae are stutter-invariant)
depth 72: Claim reached state 11 (line 290)
(Spin Version 4.2.1 -- 8 October 2004)

+ Partial Order Reduction
Full statespace search for:

never claim +
assertion violations + (if within scope of claim)
acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 52 byte, depth reached 58057, errors: 0
421689 states, stored (466713 visited)
376840 states, matched
843553 transitions (= visited+matched)

0 atomic steps
hash conflicts: 166086 (resolved)
Stats on memory usage (in Megabytes):
25.301 equivalent memory usage for states (stored*(State-vector + overhead))
22.210 actual memory usage for states (compression: 87.78%)

State-vector as stored = 45 byte + 8 byte overhead
2.097 memory used for hash table (-w19)
32.000 memory used for DFS stack (-m1000000)
31.816 other (proc and chan stacks)
0.092 memory lost to fragmentation
56.216 total actual memory usage

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

21

Information Technology Security

Property-Based Testing (PBT)
Tester’s Assistant

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

22

Information Technology Security

Property-Based Testing
Goal is to validate that an implementation
satisfies its specifications

Many errors in software are caused by
generalizable flaws in the source code
Property-based testing assures that a given
program is free of specified these flaws
Property-based testing uses property
specifications and a data-flow analysis of the
program to guide evaluation of test executions
for correctness and completeness

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

23

Information Technology Security

Property-Based Testing (Cont.)
Property-based testing tool – Tester’s
Assistant (Matt Bishop, UC Davis)

Perform code slicing on applications for a
known set of vulnerabilities
Test for vulnerabilities in code on system or
whenever computing environment changes

Compare program actions with specifications
Create low-level specifications
Instrument program to check that these hold
Run program under run-time monitor
Report violations of specifications

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

24

Information Technology Security

Property-Based Testing (Cont.)

Security Model
Specification of

Knowledge of Security

Testing

Slicing

Property

Property-based Testing

Validation of
 Property

Property Specifications

Assurance

PBT Overview Process

PBT Specific Process

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

25

Information Technology Security

Property-Based Testing (Cont.)
Property 8: Agent Shall Run at Low Priority

Accomplished in the script “detect”
Spec file contains invariant "check(nice > 0)" where nice
is the priority
Script read priority number from a configuration file
Stored priority in the variable NV
Just before the shell code to lower the priority, the
instrumenter added line: echo “assert
(nice = $NV)” >> em_trace

The trace file was named “em_trace”
Test Execution Monitor was given spec file and trace file

TEM reported that the invariant was satisfied (nice = 10)

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

26

Information Technology Security

Denial of Service (DoS) Finding
Potential for Denial of Service (DoS) Attack by
Connection to “Wakeup” Port 25252 on
Workstation (Property 14 Violation: The agent shall only
accept connections that it has initiated)

Purpose of port is to verify agent status
Probing port causes agent to wake up and call
into PatchLink PLUS server
Server limited to responding to 200 simultaneous
agent connections (2-processor, 3GB)
Probing port 25252 across network could cause
large number of agents to connect to PLUS
server simultaneously resulting in DoS

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

27

Information Technology Security

PLUS

PROBE
25252 HELL

O

HE
LL

O
H

EL
LO

H
E

LL
O

H
EL

LO

H
EL

LO

H
EL

LO

HELLOHELLO

HELLO
HELLO

HELLO

HELLO

HELL
O HELLO HELLO

HELP!

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

28

Information Technology Security

Verification Results and
PatchLink Response

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

29

Information Technology Security

Verification Results
Modeling with FMF Resulted in One Minor
Finding: Potential Denial of Service
Weakness in Communication

Weakness mitigated by secure
communications

PBT Resulted in Two Weaknesses
Uncovered in Code

CRC Checksum of patch provided, failed
resulting in potential for bad patch package
to be received

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

30

Information Technology Security

Verification Results (Cont.)
Denial of Service weakness in ‘wakeup’ port
where network probes could cause agents
to flood server with connection response
requests

Property 18: One finding was that Unix
agent runs only with root privileges

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

31

Information Technology Security

Verification Results (Cont.)
While the verification does not prove that the
agent is secure, it does provide a higher level
of confidence in the security of the agent
operating within a secure environment
Take Precautions to Run PatchLink Securely

Use SSL and firewalls
Lockdown PLUS Servers

Disable unneeded services and ports
Apply system configuration security controls
Use of monitoring software, MOM, Tripwire, Tivoli

THINK “SECURE”!

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

32

Information Technology Security

Verification Results (Cont.)
Configuration Manage (CM) PatchLink PLUS
servers

Security Verification Assessment
Unix Agent is assessed to be secure iff

PatchLink PLUS server and agents are not run in
open environments
Secure communications used
Lockdown protections are in place on systems

PatchLink Unix agent accepted for use at JPL
Results accepted by NASA IV&V Center

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

33

Information Technology Security

PatchLink Response
Property #4 (The agent shall validate all packages that they

are from its associated server): SSL communication layer
guarantees the authenticity of the server that
communications are going to (that is to say, the
agent trusts the issuing certificate authority (eg:
Verisign)
Property #5 (The agent shall validate that the package is

untampered): Files downloaded across SSL pipe
are checksum verified as they are
decompressed by the PatchLink agent

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

34

Information Technology Security

PatchLink Response (Cont.)
Property #8 (the agent shall run at low priority): Difficult
to determine exact CPU utilization by java
process

Can verify CPU utilization when patch is
deployed

Property #14 (The agent shall only accept connections that

is has initiated): The 'wakeup’ port feature is now
disabled by default in UNIX agent install

PatchLink changed default ‘wake up port’ after
discussion of potential for exploit

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

35

Information Technology Security

PatchLink Response (Cont.)

Property #17 (The agent shall provide logging of all its
events): Agent keeps verbose event logs

Verified by inspection
Property #18 (the agent shall be capable of running as
non-root and maintain reporting capabilities): This is a new
feature that the PatchLink team has
implemented in coordination with JPL for
NASA

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

36

Information Technology Security

Non-Root Unix Agent
Security Property 18

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

37

Information Technology Security

Non-Root Unix Agent
Property 18: The agent shall be capable of
running as non-root and maintain reporting
capabilities
Default install for Unix Agent is Root Privileged
Installation Script Provided by PatchLink for
Installing and Running Unix Agent as Non-Root

Allows for reporting only
Does not allow acceptance of jobs/packages
from PatchLink PLUS server
Useful for highly configuration managed
systems (e.g., flight operations systems)

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

38

Information Technology Security

Non-Root Unix Agent (Cont.)
Script Wrapped With Pre and Post Scripts by
JPL (Tom Wolfe): Script Available on Request

Two modes:
Silent – all parameters entered on command line
Manual – user is prompted for input

Pre-Install Scripts
Check for previous installation

If YES – where installed and where to re-install?
If directory is changed, MUST un-install existing
agent first

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

39

Information Technology Security

Non-Root Unix Agent (Cont.)
Setup standard enterprise user (UID) and group
id (GID) to be used by agent

Post-Install Script
Change NICE value to 19 (lower priority –
default is 10)
Setup CRON job for regular, periodic reporting
(determined at time of installation)

Requires setting user to allow execute of detect.csh
Also provide

Example command line parameters for silent install
Start and stop CRON job scripts
Problem/Issue workarounds

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

40

Information Technology Security

Final Comments
Thanks go to PatchLink for their cooperation and
participation in this verification activity
The willingness to allow an outside organization to
perform software security verification on one of their
key software components, the Unix Agent, coupled
with their responsiveness in acknowledging and
addressing the minor findings is both commendable
and responsible to one of their key customers and
the Internet community at large
This type of working relationship between vendor and
customer represents a major paradigm shift and step
forward in establishing a strong trust relationship
between partnering entities

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

41

Information Technology Security

Contact Information
David Gilliam, JPL
400 Oak Grove Dr., MS 144-210
Pasadena, CA 91109
Phone: (818) 354-0900
Email: david.p.gilliam@jpl.nasa.gov

John Powell, JPL (Modeling and Flexible Modeling Framework)
MS 125-233
Phone: (818) 393-1377
Email: john.d.powell@jpl.nasa.gov

Professor Matt Bishop, UC Davis (Property Based Testing)
phone: +1 (530) 752-8060
fax: +1 (530) 752-4767
email: bishop@cs.ucdavis.edu
PBT:

mailto:david.p.gilliam@jpl.nasa.gov
mailto:john.d.powell@jpl.nasa.gov
mailto:bishop@cs.ucdavis.edu

February 21, 2006 David Gilliam, John Powell (JPL) – Matt Bishop (UC Davis)
Chris Andrew & Sameer Jog (PatchLink Corporation)

42

Information Technology Security

Questions?

Testing

CM
Analysis

Patching

Threats

No CM
Exposures

No Patches

BAD

GOOD

	PatchLink Unix Agent Verification and Assessment
	Acknowledgement
	Agenda
	Introduction
	Introduction (Cont.)
	Introduction (Cont.)
	Introduction (Cont.)
	Introduction (Cont.)
	Software Assurance
	Software Assurance (Cont.)
	Verification Activities
	Verification Activities (Cont.)
	
	Model-Based Verification
	Model-Based Verification (Cont.)
	Model-Based Verification (Cont.)
	Model-Based Verification (Cont.)
	Model-Based Verification (Cont.)
	Model-Based Verification (Cont.)
	
	Property-Based Testing
	Property-Based Testing (Cont.)
	Property-Based Testing (Cont.)
	Property-Based Testing (Cont.)
	Denial of Service (DoS) Finding
	
	
	Verification Results
	Verification Results (Cont.)
	Verification Results (Cont.)
	Verification Results (Cont.)
	PatchLink Response
	PatchLink Response (Cont.)
	PatchLink Response (Cont.)
	
	Non-Root Unix Agent
	Non-Root Unix Agent (Cont.)
	Non-Root Unix Agent (Cont.)
	Final Comments

