HyDRA: High-Speed Simulation Architecture
for Precision Spacecraft Formation Simulation

Bryan J. Martin* and Garett. A Sohlt
Jet Propulsion Laboratory, Pasadena, CA

MyDRA— the Hierarchical Distributed Reconfigurable Architecture — is a scalable sim-
ulation architecture that provides flexibility and ease-of-use which take advantage of
modern computation and communication hardware. It also provides the ability to imple-
ment distributed- or workstation -based simulations and high-fidelity real-time simulation
from a common core. Originally designed to serve as a research platform for examining
fundamental challenges in formation flying simulation for future space missions , it is also
finding use in other missions and applications, all of which can take advantage of the
underlying Object-Oriented structure to easily produce distributed simulations.

IYDRA automates the process of connecting disparate simulation components (HYDRA
Clients) through a client-server architecture that uses high-level descriptions of data
associated with each client to find and forge desirable connections (HYDRA Bervices) at
run time. Services communicate through the use of Connectors, which abstract messaging
to provide single-interface access to any desired communication protocol, such as from
shared-memory message passing or TCP/IP to ACE' and CORBA.? HyDRA shares many
features with the HLA,% although providing more flexibility in connectivity services and

behavior overriding.

INTRODUCTION

HypDRaA is a lightweight, client-server architecture
that has a publish-subscribe paradigm for inter-client
communications, designed to enable high-speed dis-
tributed and heterogeneous simulation (see Figure 1).
It provides for complete automation of client connec-
tion and communication without programmer inter-
vention, and also provides automation of timing ser-
vices and synchronjzation, either when connected to
a real-time OS, or at lower fidelity (and higher jit-
ter) if running in a normal OS. The architecture is
designed to be overridden as needed without breaking
the paradigm.

HYDRA grew from research performed in the dis-
tributed simulation of formation fying missions. QOur
past experience showed that there was a need for
a lightweight client-server architecture that provided
automated and managed connectivity, but didn’t per-
form a large efficiency trade-off in favor of flexdbility.
Using the ability of C++ to produce in-line template
code we have created a distributed architecture in the

*Senior Staff Engineer, Engineering and Science Directorate,
Avionic Systems and Technology Division, Autonomy and Con-
trol Section, Simulation and Verification Group.

iStaff Engineer, Engineering and Science Directorate,
Avionic Systems and Technology Division, Autonomy and Con-
trol Section, Simulation and Verification Group.

Copyright © 2003 by the American Institute of Aeronautics and
Astronautics, Ine. The U.S. Government has a royalty-free license
to exercise all rights under the copyright claimed herein for Gow-
ernmental Purposes. All other rights are reserved by the copyright
owner.

vein of HLA. We have incorporated description-based
externalization similar to CORBA’s, however heavy
use of compile-time implementation has increase the
overall efficiency of HYDRA as compared with run-time
coding schemes.

Clients themselves are fully automated, with most
behaviors overridable or replaceable as needed. All
client behaviors can be performed hy calling a single
“busy” function that is provided by the base class,
resulting in callbacks to derived classes as needed.
Secure communication is enabled by point-to-point
connections between clients to reduce communication
collisions, and data is wrapped in a binary, hierarchi-
cal packet format that permits efficient runt-time data
validation as well as an increased ability to catch rout-
ing and similar errors.

HYDRA is still early in its life. Although the ar-
chitecture design has been static for some time, new
functionality continues to be added. Even so, it has
been demonstrated as a useful tool in the research en-
vironment for performing heterogeneous, distributed
and single-hosted simulation, and will soon be in use
in a variety of flight testbeds for space missions and
technology development.

HyDRA is designed to support fully asynchronous
initialization. One common problem in distributed,
multi-component simulations is that the order in which
components start is critical, as many applications are
not robust if the starting or initialization order is vio-
lated. (This is a recurring problem: networking issues,

1 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTIOS PAPER AIAA-2003-5380

TCPNIP

TCR/IP

HSt Bus

Fig. 1 HvDRA Example Block Diagram

server speeds, and diflerences in OS speeds can all lead
to significant, essentially random delays in application
start-up times.) HYDRA’s design uses two main mech-
anisms to avoid this pitfall. First, all clients are essen-
tially state machines at start-up, awaiting connections
and commands through vatious channels. Normally
this means that even a single connection is sufficient
to access the functionality of a client, however in some
cases a client cannot produce valid data until some
subset of the connections (called Services) are active.
These key Services are marked at instantiation with
the Criticel flag, indicating that the client will not be-
gin full functionality until all of these connections have
been completed successfully.

The following sections discuss the main elements
of using HYDRA to enablie distributed, heterogeneous
simulation. The last section discusses a specific appli-
cation of HYDRA to a formation-flying research prob-
lem,* and gives a brief discussion of future directions
for the architecture.

DESIGN PRINCIPLES

In approaching creating literate programming prin-
ciples,S it is desirable in many ways to write very little
code. That is net a general statement supporting the
use of minimalist, write-only languages!. Rather, it
means that when read, literate code should clearly ex-
press the intent of the programmer, not the intent of
the code. Hundreds of lines of auto-generated code
in which are buried five lines of manually generated
code that actually does the work is a good example
of how to make code maintenance and re-use diffi-

1Perl, for instance

cult. Using an object-oriented paradigm, that same
example would result in a program which had close
to five lines of implementation with what would effec-
tively been auto-generated code hidden away in parent
classes. Documentation is embedded directly into all
files where pertinent, and assembled automatically us-
ing the Doxygen package.®

Although the codification of a design methodclogy
can easily take many pages to describe, it is much
better to find a few key principles that guide the de-
velopment and techniques that are the basis of any
architecture. Although special cases and peripheral
concepts are not found within the following list of key
design features, it serves better than an exhaustive
document with the same intention:”
. Don’t make the user deal with commeon tasks:
let the user focus on what makes new elements
unique

A 'Hide, but override’ philosophy leads to the cre-
ation of default behaviors that the user can replace on
those rare occasions where necessary, without signifi-
cant time penalty.
. Design for efficiency

e Make success the fastest path
¢ Get the code out of the way of the process

» Don’t sacrifice run-time efficiency to improve one-
shot event timing, such as initialization

. Assume a distributed model first, then enable
efficient single-processor use

A single-use, monolithic application will always be
faster than a generalized application that performs the

2 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER AIAA-2003-5380

- Transport Layers

Clients, Moels,

and Protocols

and Extensions

Fig. 2 HyDRA Architecture

same task. This is not a statement of failure on the
part of generalized applications, but it points out that
generality costs time. Designing with these two ends
in mind, however, it is possible to create efficient ar-
chitectures with a lower level of generality, that still
satisly all practical needs for simulation.

4. Take advantage of standard template library
(STL) routines

The STL is well tested and efficient, and the STLs’
basis in templates results in run-time efficiency. Hand-
coded algorithms are theoretically more efficient, but
the time spent researching, coding, debugging, and
characterizing them offsets these gains in most cases.

5. Keep components properly partitioned when-
ever possible, especially in the core

Proper design partitioning saves time in the long
run, and increases utility, which opposes the normal
assumption of expediency.

6. Don’t use it just because it exists / Keep Tt
Simple

Keep the number of external package dependencies
in the core areas at an absolute minimum. Avoid
changing internal interfaces to facilitate external pack-
age use. Glue layers are also expensive to maintain, so
it is far better to use inter-client interfacing schemes
that require no extra maintenance. (This has the
added benefit of making external packages network en-
abled.)

A layered, inherited approach makes it possible
to understand the overall structure by understanding
complete components, and then understanding their
interactions.

In order to satisfy the requirements of low latency,
high speed, and flexibility simultaneously, the archi-
tecture must support a success-first principle. That is,
failures must be caught, yet doing so must not slow
down the cases that succeed. One common result of
this approach is that errors are caught and handled at
a much higher level than might otherwise be the case,

and simply passed through at the lower levels. The
C++ exception handling mechanism is superb at ful-
filling this goal, as intermediate layers do not have to
handle failures resulting from lower level calls.

LaYERED DESIGN

HvyDRA provides a layered architecture using several
techniques: templating, virtual methods, and message
interception. These techniques enable a high degree
of flexibility without a large run-time penalty, and in
fact are the major method by which we satisfy 1, 2,
4 and 5 from our design guidelines. Templating and
virtual methods are both required to make proper use
of the C++ Standard Template Library, which is used
extensively in HYDRA.

Templating satisfies our design principles in two
ways: by reducing the amount of code required to
implement new features (such as data types support,
communication packetization and validation) and by
reducing the errors typically experienced by creating
and maintaining multiple, similar methods. Templat-
ing enables additional layering in HYDRA by allowing,
for instance, the implementation of a message packe-
tization hierarchy without regards to data type.

Heavy use of virtual methods in the base class func-
tionality (See Figure 2) gives HYDRA a large number
of default, inherited behaviors that are overridden by
client applications as needed. The message process-
ing method, for example, can be overridden at any
level, with unprocessed messages passed to the next
level. Only the messages unique to a given client need
appear in the code for that client. This produces read-
able, compact code for each client application which
can rely on existing code for default behaviors. Client
applications can also choose to override these default
behaviors and not rely on existing behaviors. This
satisfies the ‘Hide, but override’ philosophy of the first
design principle and gives each client total control over
how each message is processed.

These design layers help satisfy the HYDRA design

3 oF 10

AMERICAN INSTITUTE OF ABRONAUTICS AND ASTRONAUTICS PAPER ATA A-2003-5380

principles as outlined in the previous section. Nor-
mally, keeping a strict design separation between low-
level communication API (Section FORMING CoON-
NECTIONS), high-level connection description (Sec-
tion COMMUNICATION), and data description (Section
SENDING INFORMATION) can add latency to run-time
communication due to penalties cause by generalized
code. With templating and careful design, HYDRA
avoids these latencies while providing separable com-
ponents.

In the next section, we will describe the compo-
nents of the main HYDRA Communication layer: form-
ing connections, sending information over connections,
and event callbacks.

COMMUNICATION

An outlined in the introduction, HYDRA employs
a client-server architecture in which clients register
with a server application at initialization. Con-
nectivity between clients is described by Services,
which are communicated to the server when an ini-
tial connection with the server is formed. Both
types of applications share a commoan abstraction layer
for inter-process message serialization and archiv-
ing (Archivelperator), transmission and receipt.
They also share a pure virtual event callback class
{DBNotifier), which calls optional user defined meth-
ods when various run-time events are triggered, and
defaults to lower-level methods if the user does not
define them. These commonalities allow a server appli-
cation to aperate just like a client application in many
ways, including the ability to have multiple server ap-
plications (where one server may function as a client
application for a second server). The server does have
some additional responsibilities which differentiate it
from a standard client application. These responsibil-
ities include identifying, commanding and potentially
tracking connections between registered client applica-
tions.

FORMING CONNECTIONS

The abstraction layer used by both client and server
applications for message transmission and receipt was
written in order to to provide high-speed, low-latency
communication without loss of run-time flexibility.
A modular Connector class is used to abstract the
communication transport layer (TCP/IP, Scali, MPI,
shared memory, serial bus, etc.) between clients to
allow a variety of transport mechanisms without re-
quiring a-priori knowledge of which is to be used. The
Connector class is designed to detect problems such as
the termination of one of the connected client applica-
tions and relay that information via callback methods.
Disconnection is handled through client notification at

[¥
TCRIP; L
Part::: :

Fig. 3 Bypassing Layers of HYDRA

the base client level, and abnormal disconnection {due
to the interruption of a client thread by the user, for in-
stance) is handled cleanly by the remaining client just
as normal disconnecticn. Due to its wide availability
on distributed systems, we nominally use a Connector
class based on TCP/IP.

The Connector class not only manages connections,
but additionally provides automatic externalization of
outgoing data (via the Archivelperator class), and
caching and assembly of incoming data.

Connections between clients are configured at run
time by the HYDRA server application. Each client
application describes the information it is willing to
provide and accept from other clients at a high level.
The Service class provides a high level encapsulation
of this information. As each new application is run in
the HYDRA environment, it forms a connection with a
server application, which proceeds to dynamically cre-
ate a permanent connection with the client. At any
time after this connection is formed, the client appli-
cation provides the server with information about its
Services. Based upon that information, the server
decides which clients need to establish connections and
what transport layers and protocols are available for
this to occur (shared memory if the processes share a
backplane, TCP /IP if nothing faster is available, etc).
Once the server identifies that two clients are offering
compatible services and a transport medium is avail-
able, it sends a message to each client with the details
required to create a Connector and which Service is
communicating over that connector. Each Connector
is point-to-point and allows direct communication be-
tween clients. Services may be either point-to-point
or broadcast, where broadcast services communicate
over several Connectors to as many clients as required.

One major advantage of using point-to-point for
all inter-client communications is that it can reduce
communication bottleneck based on transport archi-
tecture. Additionally, in secure environments each
client can encrypt communications based on local keys,
so that messages passed between two clients are only

4 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATAA-2003-5380

readable by those clients even if intercepted?.

Another advantage of this design is that applica-
tions may interact with HYDRA clients at almost any
level. Figure 3 shows several applications (including
applications which are not HYDRA clients) using differ-
ent levels of functionality provided by the architecture.
‘While a normal HYDRA client never deals directly with
setting up Services or Connectors, it is possible to
directly specify the Connector for a service, or do away
with the service completely and hard-code a connec-
tor between two applications, still making use of the
data validation and assembly inherent in the Packet
class which will be described in the next section. In
fact, if a connector is put in raw’® mode it no longer
performs even these functions, allowing connection to
non-HYDRA applications. Note that in the diagram,
the central application still makes use of HYDRA’s ca-
pabilities to manage and monitor the connection to the
ncn-HYDRA application.

SENDING INFORMATION

Hypra provides a Packet class for serializing and
validating data. for transmission between applications
over a Connector. In a homogeneous environment, se-
rialization may be skipped in favor of communication
using raw binary data. Since HYDRA does not know
a-priori whether the environment is heterogeneous, it
has an abstraction layer used to delay that decision
until the connection is formed. This data abstrac-
tion uses the ArchiveOperator class, which provides
a single virtual method in the base Packet class for
insertion and extraction of data. The XTL® package,
a template-based layer on top of XDR, is used to seri-
alize Packet data into a binary form for transmission
over a heterogeneous network.

The Packet class also provides limited, expandable
fault protection and detection schemes to insure insure
successful delivery of information. These mechanisms
are also built to allow new packet types to be derived
from existing types with a minimum of effort. Data is
stored in Packets hierarchically, with the base packet
containing three pieces of information: the identity of
the base packet class (later used for version checking),
the total length of the incoming or outgoing packet,
and the identity of the last packet in the inheritance
chain (the final ID). (See Figure 4)

2In fact, this can be implemented in a straightforward man-
ner if each clients uses public-key cryptography, public do-
main packages are available to enable this, including GnuPG:
http://www.gnupg.org

%In raw mode, packetizing, externalization, and validation
are not performed, and the size of incoming data is unknown.
Typically, in rav mode the receiving application must perform
these functions based on a-priori knowledge of the external, non-
HybDraA application

Serializable
Object

S g
| finalPacketiD
ID (SomePacke)
_intData
_floatData
_doubleData _
“ID(OtherPacken):

_numbData -

Fig. 4 Packing and Unpacking of Data in HYDRA.

A number of basic Packets are provided, and the
uger can also create new packet types based on the
required application. Creating a new packet type re-
quires minimal effort since the needed serialization
and fault protection methods are inherited from the
base Packet class, While the Packet class provides
very useful functionality, some applications may re-
quire lower level communication. HYDRA aliows an
application to bypass packet communication and send
raw data directly over a Connector if required. This
allows a client to communicate with an outside pro-
cesses which does not understand the packet structure.
However, sending raw data does not allow for using the
fault protection provided by the Packet objects.

One major advantage HYDRA has over DIS (Dis-
tributed Interactive Simulation, IEEE Std 1278.2-
1995), is that it uses point-to-point communications
wherever possible, much like CORBA does. Unlike
CORBA, however, HYDRA supports very low latency
communication.

EVENT CALLBACKS

Callback methods are used by HHYDRA to notify an
application about a variety of events, including com-
munication events. Each event callback has a default
behavior which can be overridden at several levels to
provided needed functionality, and event handling be-
havior can be defined on a per client, per Service, and
per Connector level. Figure 5 shows how a poll com-
mand generated by a HYDRA application results in a
callback message which can be interpreted at various
levels of abstraction. The application code, HYDRA
client code (or server code if the application is a server)
and HYDRA base code are each given an opportu-
nity to process the message callback before passing
the message to the mext abstraction layer. If these
three levels fail to process the callback successfully,

5 0F 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATIAA-2003-5380

Poll Cmd

Rejected
Message

Message

Fig. 5 Routing of Messages in HYDRA.

the DBNotifier class provides a final layer of error
logging and the message is rejected.

The most common of these message callbacks is no-
tification of the receipt of a Packet sent from another
application. Each Packet header includes information
about the type of information it contains. Based on
the Packet type, the Connector it was received over
and the Service associated with that Connector, a
HyDRA application can process the message or pass
the message to the parent client code. Creating a
new client application can be as simple as creating
code to deal with specific Packet types of interest and
letting the parent handle all other Packets. Other
event triggered callbacks include the creation of a new
Connector, notification that a Connector has success-
fully established point-to-point communication with
another client and notification that a connection has
closed. One special Packet hierarchy and the call-
back methods that deal with it, the time stamped
TimePacket, are discussed in section on time depen-
dent clients.

TRACKING HEALTH OF CONNECTIONS

The relative health and status of all connections
is tracked automatically by a reporting mechanism
between the client and the server, where this repos-
itory of information is held. Status messages from the
clients are sent only when status changes do reduce
traffic on the communication channels that would be
caused by a polling model. Each service request of each
client is tracked and timestamped as it proceeds from
first notification to the server of a request, through
connection and eventual termination. This time his-
tory can be archived and reviewed later for perfor-
mance or validation purposes. This information may
be used in a variety of ways, from automatically graph-
ing the current layout of the simulation to detecting

failed connection attempts or non-respensive clients.
Currently, the data is used by a special-purpose client
to automatically generate a set of web pages that give
insight into the health, status, and eventually through-
put of each service connection, sorted by client, service,
or as an aggregate.

TIME-DEPENDENT CLIENTS

In a simulation environment, some of the client ap-
plications involve propagating the state of a dynamic
system forward in time using a numerical integrator.
These client applications include the concept of simu-
lated time and require special consideration when com-
municating with other time-dependent clients. Syn-
chronization is used to insure that messages passed
between time-dependent clients are received and pro-
cessed at the correct simulation time. Without a
synchronization method, one client’s integrator might
advance time past the time needed to correctly process
a message from a second client.

TIME-BASED PACKETS

The TimePacket class and its children, which are
derived from the Packet class discussed in SENDING
INFORMATION, are used by time-dependent clients to
include temporal information in inter-client communi-
cations. The TémePacket class includes four separate
time tags which define the simulated time at which the
message is generated, transmitted, recetved and pro-
cessed. These time tags allow the modeling of time
delays in the communication between time-based client
applications, and can be modified as appropriate by
the model {client) at either end of the Service. Nor-
mally, the sender sets the generated and transmitted
time tags, and the receiver sets the received and pro-
cessed time tags. These time tags can be based on a
local clients concept of time, which may need to differ
from the universal integration time. This is useful for
tracking and modeling skew and drift between space-
craft clocks in a multi-spacecraft formation. Figure 6
shows how two spacecraft’s local time (LT) may dif-
fer from the universal time (UT). The red line shows
spacecraft B transmitting a message to spacecraft A
and how the local time on each spacecraft is different
at the time this message is sent.

Upon receipt of a TimePacket the base client class
automatically inserts the message in a cache, sorted
based on the simulation time at which the message
must be processed. HYDRA buffers the message in this
cache until the integrator has reached the correct sim-
ulation time for processing the message. Once this
happens HYDRA pauses the integration, generates a
callback event for the TimePacket message, and then
resumes integration. In this way all inter-client mes-

6 OF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATAA-2003-5380

Universal time,
Clgck Skew =0

Clock Skew =+0.1

Fig. 8 Multiple Clock Skew Simulation in HYDRA.

sages can be processed by the client at the correct time,
taking into account relative clock skew, transmission
delays, processing delays, and without inappropriate
temporal quantization caused by integration intervals.

PERIODIC SYNCHRONIZATION

Communication between time-dependent -clients
typically occurs at a perfodic simulation rate. As the
simulation time for each client is advanced via numeric
integration, messages are sent to other clients based on
the current simulation time. In a formation flying sce-
nario, these periodic messages include inter-spacecraft
communication, formation controller commands, rel-
ative sensor measurements, and the transmission of
physical medium such as light signals. For the cor-
rect generation, processing, and coordination of these
messages, the integration time of all clients must be
synchronized before messages can be generated and
processed. This synchronization prevents clients from
advancing their local integrators until all clients have
processed time tagged messages and completed inte-
gration cycles.

In order to provide synchronization of independent,
time-based simulation clients, HYDRA offers a peri-
odic TimeTick client with a broadcast service. Time-
dependent clients register a TimeTick Service in order
to receive synchreonization messages at a simulation
rate specified by the client. The separate TimeT-
ick client then manages the poientially different rates
of all connected clients in order to generate global
synchronization commands at appropriate simulation
times. Upon receipt of a TimeTick message, each
client is commanded to advance its integrator to the
next synchronization time, stopping off along the way
{as described in TIME-BASED PACKETS) in order to
process any buffered TimePackets. This activity is
completely transparent to the client code. As each
client finishes integrating forward to the next synchro-
nization time, it sends a completion message to the
TimeTick client. Once the TimeTick client has re-
ceive a completion message from all connected clients,
it waits for the next appropriate interval and gener-
ates the next TimeTick message. In a non real-time
environment, these intervals are typically generated as
soon as all synchronization replies are received.

At any point during this process, a client may trans-
mit a TimePacket-derived message across a Service.
As described in TIME-BASED PACKETS, these pack-
ets include information about the simulation time at
which they are generated by the client. However,
the current simulation time of a second client is non-
deterministic. The only guaranty is that the second
client has not integrated past the next synchroniza-
tion time. This means that inter-client, time-based
messages are only guarantied to arrive at the synchro-
nization boundaries. When a TimePacket is received,
the second client will use the synchronization time and
any modeled time-delays to place the message in the
cache for processing during the next commanded time
advancement by the TimeTick client. Since messages
are only guarantied to be delivered at the synchroniza-
tion boundaries, clients often employ implicit message
receipt blocking to prevemt message receipt during
time advancement to the next synchronization time.
This implicit blocking prevents non-deterministic be-
havior of the overall simulation. Figure 7 shows how
synchronization and communication/queuing of time
tagged (TT) and un-time tagged packets (UTT) intex-
act with time-dependent clients.

APPLICATION AND RESULTS

JPL has a significant research effort in the area of
contrel and analysis for formation flying missions 911
Advanced algorithms have been performance-validated
on several generations of software-based formation fly-
ing testbeds, which are an invaluable tool for perform-
ing research activities in this area. However, past
attempts to generate testbeds have been based on
monolithic (non-distributed) simulation technologies
(cither self-written or based in COTS tools like Math-
works’ Simulink), and past experience shows why this
is challenging for a monolithic simulation. A previ-
ous two-spacecraft simulation with optics models and
flexible-body dynamics required more than 60 minutes
of CPU time on a Sun Ultra 10 computer to generate
30 seconds of simulated time in Simulink.

Another example testbed used kinematic models
alone with perfect actuation to simulate five spacecraft
simultaneously for Monte-Carlo analysis, and was able
to achieve approximately 25 test cases per hour for ap-

7 orF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATAA-2003-5380

HYDRA

Client A

1

¢ 4
TN+.l TNtZ
RTI

TT Synch

HYDRA
Z

Client B

|

C ool

{ ‘Wall clock time

= Implicit message receipt blocking

Fig. 7 Client Timeline and Synchronization.

proximately 1600 seconds of simulation per test case.
This testbed was involved in testing the formation
initialization problem,! wherein a multiple-spacecraft
reset has occurred and each spacecraft is tasked with
finding the others (an open research problem). In or-
der to validate the new algorithm, many test cases
were required and it was not feasible to generate them
in a practical length of time using the existing testhed.
Since HYDRA had been designed with exactly this ap-
plication in mind, it proved a natural environment to
both provide needed data to a research project, as well
as validate the design and approach of the architecture.
The next section will discuss the HYDRA clients used
in the implementation of this testbed.

METHODOLOGY

Each spacecraft is simulated using a time-based, self
integrating HYDRA client (ScClient). This client uses
a derivative of NASA’s DARTS!? multi-body dynam-
ics package, and a variable step integrator for state
propagation.’® The dynamic and kinematic configu-
ration of the spacecraft is obtained from a spacecraft
definition file at run time and allows a single, general-
ized client to simulate different spacecraft types. For
this application, each spacecraft client includes sim-
plified thruster and truth-based inertial sensor models.
ScClient allows for a spacecraft to be initialized at an
arbitrary position and velocity for use in Monte-Carlo.

A single HYDRA client is used to simulate the
global physics of the AFF sensors on each spacecraft
(AFFClient). Each AFF sensor provides relative sen-
sor data (range and bearing) for spacecraft in its field
of view, provided an AFF ”lock” is achieved, which
occurs when two AFF sensors face each other and are
within a specified field-of-view cone. In order to de-
termine if AFF lock exists, each spacecraft needs to
know the position and orientation of all other space-
craft. A centralized AFFClient is used to reduce this

communication overhead. Each ScClient sends it’s
current state to the AFFClient, rather than broadcast
the state to all spacecraft clients. The AFFClient then
determines which individual spacecraft have achieved
AFF lock and sends each one of them the correct rel-
ative sensor data.

A HYDRA client (FormationInitClient was cre-
ated to implement a general version of the formation
initialization algorithm outlined in.# This algorithm
commands spacecraft maneuvers based on the rela-
tive sensor reported by each spacecraft and an in-
ternally estimated state for each spacecraft that has
been seen at least once. If the algorithm is success-
ful, all spacecraft will achieve zero relative velocity.
Once relative velocity is nulled, a second algorithm
(not simulated in this example) could be used to bring
the spacecraft into a desired relative position and ori-
entation. Testing the initialization algorithms for dif-
ferent numbers of spacecraft is very easy using the
HYDRA framework since both the AFFClient and the
FormationInitClient work for any nmumber of con-
nected spacecraft. The number of spacecraft being
simulated is determined at run-time based on the num-
ber of ScClient applications that are executed.

The final client used in this demonstration appli-
cation is a TimeTick client as discussed in PERIODIC
SYNCHRONIZATION. This client provides synchroniza-
tion between the distributed spacecraft clients.

RESULTS

Figure 8 shows the aggregate data for 50,000 simu-
lation results the § spacecraft initialization case. The
figure displays a histogram of the time (using 60 second
bins) required for all spacecraft to null their relative
velocities based on the given initialization algorithm.
Various stages of the initialization algorithm are de-
noted on the figure. A large percentage (11%) of the
simulations finish in the first 60 seconds of simulated

8 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATAA-2003-5380

60008

Number of simulation completions

[t
[=1
=3
=

7000 Aggregate data for simulated formation initialization, 50,000 runs

0 500 1000 1500 .
Initialization completion time

g R
2000 2500 3000 3500

Fig. 8 Monte-Carlo Simulation Results

time. These are the result of starting the simulation
with all 5 spacecraft in a positions which allow nearly
instant AFF lock of the entire formation. Only a very
small percentage (j 0.1%) of simulations required the
out-of-plane search phase of the algorithm (See? for
complete details and analysis of the algorithm). The
average time for formation initialization was approxi-
mately 475 seconds of simulated time, which required
about 2.5 seconds of CPU time.

50,000 test cases using the HYDRA framework re-
quired approximately 35 hours of computation time
on a small COTS cluster computer (twelve 1.8 GHz
CPUs). This same set of data would have taken about
six weeks * to compute using the old monolithic sim-
ulation, which also had far less fidelity.

FuTurE WORK

In the next year, we will apply the HYDRA frame-
work to several current missions and research projects
at JPL, including real-time flight software testbeds for
the Space Interferometer Mission (SIM), and the For-
mation Algorithm Simulation Testbed (FAST). Hy-
DRA will continue to gain new breadth and depth in
connection automation and auto-negotiation, benefit

4The new, distributed, dynamic simulation is approximately
20 times faster than the older, kinematic-only simulator.

from the implementation of new multi-rate capabil-
ities currently under research, and the expansion of
the existing graphical, web-based interface to include
not only complete status monitoring of the simulation
and its components, but also control of the simulation
and real-time data display and analysis. In addition,
automatic archiving and time tagging of all transmit-
ted data is planned, with an interface that allows easy
browsing, searching, and graphing of historical data
from a web interface,

ACKNOWLEDGMENTS

The work described in this paper was carried out
at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration. Funding was
provided by the Distributed Spacecraft Technology
program. The authors thank Fred Hadaegh for his
continuing support of research associated with forma-
tion flying simulation.

REFERENCES

18chmidt, D. C., “ACE: and Object-Oriented Framework
for Developing Distributed Applications,” Proceedings of the
6th USENIX C++ Technical Conference, USENIX Association,
Cambridge, Massachusetts, April 1994.

2The Object Management Group, The Common Object Re-
guest Broker: Architecture and Specification, Revision 2.6,
http:/ /www.omg.org, December 2001,

9 or 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATA A-2003-5380

3U.8. Department of Defense, High Level Archi-
teciure Inierface Specificaiion, Version 1.3, draft 1,
http:/ /www.dmso.mil/projects/bla, April 1998.

45charf, D. P., Ploen, 8. R., Hadaegh, F. Y., Keim, J. A.,
and Phan, L., H., “Initialization of Distributed Spacecraft For-
mations,” Submitted, 2003.

5Knuth, D. E., “Literate Programming® The Computer
Journal, Vol. 27, No. 2, May 1984, pp. 97-111.

Svan Heesch, D., “Doxygen,” hitp://www.dozygen.org,

2003.
"Locke, ‘Weinberger, Searls, and Levine, “Clue-
train Manifesto,” hiip: //wwnw.everything2.com/ in-

dex.pl?node= Cluetroin % 20Manifesto, 1999,

8Pereira, J. 0., “eXternalization Template Library,” Tech.
rep., Departamento de Informética, Universidade do Minho,
http:/ /xtl.sourceforge.net/, 1999.

9Scharf, D. P., Hadaegh, F. Y., and Kang, B. H., “A
survey of spacecraft formation flying guidance,” Proc. CNES
Int. Symp. on Formation Flying Missions and Technologies,
Toulouse, France, October 2002.

10%Collision avoidance guidance for formation-flying applica-
tions,” Proc. of the ATAA Guidance, Nevigation, and Conirel
Conference, Montreal, Canada, October 2001, pp. paper ATAA-
01-4088.

1Hadaegh, F. Y., Ahmend, A., and Shields, J., “Precision
guidance and control for formation flying spacecraft,” Proe.
CNES Int. Symp. on Formaiion Flying Missions and Technolo-
gies, Toulouse, France, October 2002.

12jain, A. and Man, G., “Real-Time Simulation of the
Cassini Spacecraft Using DARTS: Functional Capabilities and
the Spatial Algebra Algorithm,” 5th Annual Conference of
Aerospace Computational Control, Aug. 1992.

12Cohen, S. and Hindmarsh, A., “CVODE, a Stiff/Nonstiff
ODE Solver in C.” Computers in Physics, Vol. 10, No. 2, March-
April 1998, pp. 138-43.

10 oF 10

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER ATAA-2003-5380

