
Distributed Network Scheduling

Bradley J. Clement, Steven R. Schaffer
Artificial Intelligence Group

Jet Propulsion Laboratory
4800 Oak Grove Drive, M / S 126-347

Pasadena, CA 9 1 109
Bradley.J.Clement@jpl.nasa.gov, Steven.R.Schaffer@jpl.nasa.gov

Abstract
Distributed Network Scheduling is the scheduling of hture communications of a network by

nodes in the network. This report details software for doing this onboard spacecraft in a remote
network. While prior work on distributed scheduling has been applied to remote spacecraft
networks, the software reported here focuses on modeling communication activities in greater
detail and including quality of service constraints. Our main results are based on a Mars network
of spacecraft and include identifying a maximum opportunity of improving traverse exploration
rate by a factor of three; a simulation showing reduction in one-way delivery times from a rover
to Earth from as much as 5 to 1.5 hours; simulated response to unexpected events averaging
under an hour onboard; and ground schedule generation ranging from seconds to 50 minutes for
15 to 100 communication goals.

1, Introduction
This paper focuses on issues of autonomously adapting communications for a remote network

of spacecraft. If the spacecraft are designed to always guarantee available resources (e.g.
transceivers, memory, power) to autonomously redirect communications on the fly, then in order
to make such reactive communications autonomous, all that is needed onboard are control
sequences for switching transceivers and slewing and routing algorithms for intermittent
communication opportunities [11. Such spacecraft designs can be expensive since providing
resources for all possible scenarios can incur significant additional vehicle mass. We investigate
missions where communications resources are limited, requiring autonomous planning and
execution. Unlike typical networks, spacecraft networks are also suited to automated planning
and scheduling because many communications can be planned in advance. Because the network
of spacecraft can represent multiple missions, missions will be reluctant to give up control of the
spacecraft. Because communication among spacecraft is often intermittent (due to orbital and
resource constraints), a spacecraft that can make scheduling decisions autonomously will be
more responsive to unexpected events. Thus, a centralized planning system will not be sufficient
to enable reactive communications, so we propose a distributed network scheduling system.

The software automatically negotiates the rescheduling of these communications with other
spacecraft while respecting constraints with communication resources (such as memory and
transceiver availability). It provides an interface for a user or automated process to request
communication service and to receive a reservation with updates on the expected or resulting
quality of service (QoS).

Figure 1 shows the architecture of the distributed network scheduling system. The middleware
component provides an application-level interface to the communications protocol stack. It
passes requests from users (e.g. mission operations staff, scientists), autonomous control
systems, or other spacecraft to a distributed planning interface that manages the negotiation

mailto:Bradley.J.Clement@jpl.nasa.gov
mailto:Steven.R.Schaffer@jpl.nasa.gov

A

A
ests reservations, context

Figure 1. Distributed network scheduler architecture

process, and instantiates goals in the planner. The planner schedules communications to achieve
the goal with help from adaptive communication algorithms. It does this by providing contextual
information about the future network state and the communication goal in question. The
adaptive algorithms then simulate and report how data will be transferred and with what quality
of service (QoS). The distributed planning interface then returns the schedule and QoS
information to the requestor as a reservation. Distributed planning also manages the negotiation
of requests as the needs of the spacecraft change (as determined by the planner). Status of
reservations are updated and reported as re-planning, negotiations, and execution of
communication activities unfold.

In the remainder of this document, we describe the interfaces of the architectural components
and their implemented capabilities. We then show that the exploration rate of a rover (similar to
Mars Science Laboratory - MSL) on a long traverse can be improved by no more than a factor of
three with adaptive communications. We also simulate communications between a rover and
Earth with orbiter relays to demonstrate reduced latency by as much as 3.5 hours. We then report
experiments on a simulated Mars network of five spacecrafthovers to gauge the systems ability
to reactively re-schedule communication activities in a distributed fashion.

routing,
protocol,

2. Communication Requests, Reservations, and Status

for the following variables:
An application or user requests future communication from the network by providing values

status/QoS

in t id - index for tracking
string source -who is sending data
string destination -who is receiving the data
int size - estimate of size of data to be sent in Kbits
real bandwidth - min - minimum required bandwidth Kbits/s
real bandwidth - max -maximum usable bandwidth in Kbitsh
real priority - importance of hlfilling request (larger numbers indicate greater
importance)

vQoS decisions

int
int
int

distributed
planning interface

start- t ime-min - minimum requested start time of communication
start - time-max - maximum requested start time of communication
duration - min - minimum needed time duration of initial data transmission

adaptive comm.
interface

2

int duration - max - maximum requested time duration of initial data transmission
int delivery - time-min - minimum required delivery time
int delivery - time-max - maximum requested delivery time
boo1 progressive - whether data is recreated as it is received (= true) or transmission
is only valuable when completed, Le. all or nothing (= false)
real loss - overall -maximum percentage loss tolerance of overall data
real lossger-block -maximum percentage loss tolerance for any block
real loss - block - size - size of block for which the loss tolerance is specified
string protocol -what protocol(s) should be used for transmission and with what
options (e.g. CFDP -noack); this string has no generic structure and is to be generated and
interpreted by adaptive communications software through an interface.

Upon receiving a request, the network will schedule ("reserve") the communication and reply
with the expected quality of service for the same variables above and a real-valued
percent delivered variable, indicating the percentage of the data delivered or expected to
be delivered. Status during and upon completion of execution is also reported through the same
construct .

3. Local Scheduling
We use CASPER to schedule communications according to constraints on memory,

transceiver availability, and available windows of communication between scheduling nodes
(spacecraft). The main activities scheduled are send, receive, and relay, for transmitting,
receiving, and relaying data files. Segmentation and reassembly of files is supported for when
files are too large to be sent in available communication windows. In addition, scheduling
supports cut-through switching, receiving and relaying a file simultaneously when multiple
transceivers are available. The timing and duration of activities takes into account constraints on
communication delay and bandwidth. While quality of service estimateshtatus is propagated
through the network, the scheduler currently does not handle failures, such as over-tolerance data
loss.

Scheduler Activities
The main activities we use to model data transfer are send, transmit, receive, and

relay. The send activity recursively decomposes into a series of transmit activities for
segmentation of the file transfer. It also includes a free - memory activity following each
transmit where the amount of data sent is replenished to a memory resource at a time
indicated by a f ree-type parameter, which has one of the following values: 'never" I 'on
transmission" I 'on de 1 ivery'! , "on - custody - xfer. " If 'on
transmission, It the memory is freed at the end of the transmit activity. If "on
delivery, memory is freed at the end of the receive activity of the receiving node. The
"on - custody - xf er" value is intended to support custody transfer protocols that are not yet
implemented.

When one node is executing the send activity, the receiving node executes a
The relay activity decomposes into a receive activity. If the receiving

re 1 ay activity.
node is not the

3

intended destination of the file, then the relay activity also decomposes into a send activity,
routing the data elsewhere.

The transmit and receive activities are constrained to be scheduled only during
available communication windows, which are modeled as states having “in-vi ew” and
“out - - of view” values over time intervals provided by the system designer. These activities
also must reserve a transceiver resource from a set provided by the system designer. The
adaptive communication algorithms (shown in Figure 1) provides the assignment algorithm. The
receive activity also consumes memory of the amount of the data received.

Delay between the start of the send and receive activities between pairs of nodes is
specified through an adaptive communications function. Cut-through switching is implemented
in the relay activity. This is where a file is received and transmitted simultaneously. The start
of the send sub-activity (of relay) is computed according to the start of the receive sub-
activity and the data rates of both receive and send such that data blocks are not sent before
they received. These activities and resources are modeled in the ASPEN (Activity Scheduling
and Planning Environment) modeling language [4].

The interface to adaptive communication algorithms (shown in Figure 1) is simply the
provision of many of the dependency functions in the above activities. Again, these functions
could be provided in a middleware communication layer.

Resources and States
+ memory - Decisions about when to store and delete data are based on memory availability.
+ data - It may be important to keep track of whether particular data files are stored or deleted

in case one needs retransmission due to an unexpected failure.
+ antenna(s) - Spacecraft can only communicate with one (or maybe two) others at a time.
+ communication windows - Spacecraft can only communicate when in view of each other.
Obvious resources that are not considered are power and battery energy. We do not consider the
network scheduler’s role to handle these other resources and assume that their safe use is
guaranteed by ground operations or an onboard planning and execution system.

Metrics
The network scheduler currently reschedules to resolve conflicts, but can be extended to
optimize the schedule according to summed priority of scheduled activities over a horizon by
using ASPEN’S optimization framework. The network scheduler itself will be evaluated in
simulation according to time to resolve new or changed requests. This will be compared to
current techniques later in the Evaluation section.

Adaptive Communication API
The following functions (listed as dependencies in the model of the activities) should be
implemented to decide how to adapt communication for a given context:

string choose-antenna(my-name, protocol, requested-bandwidth)

string route-to(sender, destination, protocol)

real request-bandwidth(requested-bandwidth, sender, antenna, receiver, bandwidth)

determine which antenna should be used according to the protocol and requested bandwidth

determine to whom data should be routed next

determine the appropriate bandwidth based on the protocol and the requested bandwidth

4

bool is-interruptible(protoco1)

bool isgrogressive(protoco1)
determine whether are not the transmission can be interrupted and continued later

determine whether or not this protocol allows the file to be created as it is received
(otherwise it is sent all-or-nothing)

determine when the data can be cleared from memory (i.e. when custody is transferred); valid
values are “never”, “on-transmission”, “on-delivery”, and “on-custody-xfer”

determine the percentage of the data expected to be delivered

determine the percentage loss of the overall image according to the protocol and the
requested tolerance

determine the maximum percentage loss of the image per block according to the protocol and
the requested tolerance

determine the expected bandwidth to be used by the sender’s protocol base on the request

determine the protocol the sender should use for this request

string get-free-type(protoco1)

real replygercent-delivered(protoco1, duration, bandwidth, size,percent-delivered)

real reply-loss-overall(protoco1, loss-tolerance-overall)

real reply-lossger-block(protoco1, loss-toleranceger-block, loss-block-size)

real calc-send-bandwidth(my-name, send-start-time, destination, receiver, antenna,
requested-delivery-time, delivery-time-max, sendgrotocol)

string get-sendgrotocol(my-name, send-start-time, destination, receiver, antenna,
requested-delivery-time, delivery-time-max, send-bandwidth)

4. Distributed Scheduling
Scheduling is distributed by propagating information through the network to nodes that are

affected and by giving each node some level of decision-making authority with respect to local
scheduling. We use Shared Activity Coordination (SHAC) [3] to implement this.

SHAC is an interface between planninghcheduling systems, a general algorithm for
coordinating distributed planning, and a framework for designing and implementing more
specific distributed planning algorithms. Within SHAC, a shared activity is an activity that some
set of planners must collectively schedule. It can be a coordinated measurement, a team plan in
which planners have different roles, a use of shared resources, or simply an information sharing
mechanism. Planners are coordinated when they reach consensus on the shared activity.
Consensus is achieved when they agree on values for members of the shared activity structure:
+ Parameters: Shared variables (e.g. start time, duration, bandwidth)
+ Constraints: Each planner’s constraints on parameter values
+ Roles: Subset of planning agents assigned to roles
+ Permissions: Variables that determine how each planner is allowed to add, remove, and

modify a shared activity
Roles determine how an agent participates in the shared activity. For example, a transmit role

in a shared communication activity has different resource constraints than the receive role. Roles
specify which agents share the activity and can determine permissions and the protocol used to
govern the agent’s handling of the shared activity. Constraints can specify restrictions the agents
have on the values of parameters. By propagating local constraints, agents can make scheduling
choices that avoid conflicts with others without knowing the details of their plans. For example,
an agent can send a constraint on the time windows of an activity as local scheduling constraints.

Protocols (distributed planning algorithms) specify how constraints, roles, and permissions of
the shared activities change over time and are used to resolve conflicts among the planners. For
example, a round-robin protocol rotates permission assignments among the planners, giving

5

them each turns to replan the activity. A delegation protocol assigns and re-assigns agents to
roles. Protocols are designed by sub-classing built-in and user-defined protocol classes.

By constructing protocols and modeling the attributes of shared activities, a system designer
specifies the autonomy of each agent with respect to decision-making and computation. A
completely centralized approach gives one agent a role in each activity with full permissions.
Decentralization is introduced when agents propagate constraints, when agents fulfill different
roles, or when more than one agent has planning/scheduling permissions. The SHAC
coordination algorithm (stated simply) is a continual loop of refiningheplanning, applying
protocols to further modify shared activities, sending shared activity updates to the sharing
planners, and integrating updates from others. The planner interface enables different existing
planning tools to interact in this framework.

SHAC is customized for the particular application domain. For a Mars network, we specified
shared activities between pairs of spacecraft mapping transmit activities of one spacecraft to
relay activities in another. Shred parameters include those of the requesdreservation. The
roles specify which local activity (transmit or relay) corresponds to each agent (spacecraft)
potentially participating. The transmitter is assigned a delegation protocol for choosing a
spacecraft to relay the data. Other agents are assigned a subordination role. The subordination
protocol will remove the agent from the shared activity’s roles with a specified probability if the
agent is yet unable to successfully schedule the activity locally. This triggers the delegator to
assign another subordinate.

5. Evaluation
The distributed network scheduler enables reactive communications within the context of

scheduled operations by autonomously negotiating over communication changes. In addition,
the scheduling system can generate schedules using the same negotiation mechanisms. This
means that separate missions (such as the many studying Mars) can use this software to
collaboratively schedule communications on the ground. A prototype network scheduling
system was implemented for communication models of MER-A, MER-B, MGS (Mars Global
Surveyor), Odyssey, and Mars Express. We give experimental results for this application
domain after giving more theoretical results illustrating the benefits of adaptive communication
for rover exploration that this system enables.

Rover Exploration Performance
Here we examine the science retum performance of a semi-autonomous rover investigating

rocks during a long traverse between sites. We simulate a traverse based on early MSL scenarios
where a rover has the ability to autonomously detect rocks of potential scientific interest,
downlink images, and investigate based on commands returned after scientists have studied the
images. The rover continues along its path and turns back to perform detailed measurements if
commanded. Figure 2 illustrates how the rover must traverse the path three times in order to
retum to the rock. In the worst case, a target rock is identified just after each communication
opportunity causing the rover to traverse the entire distance three times. By providing more
communication opportunities through adaptive rescheduling this backtracking can be reduced,
resulting in a theoretical opportunity of threefold exploration speedup.

6

uplink nteresting images downlink images
rock response -

4
backtrack to rock
for experiments

continue traverse
b

Figure 2. Rover backtracking to study a rock during a traverse

>r
0 .-
0 0
- 0 a - > a

.= 2

0.01 0.1 1 10 100

comm opportunities / # of rocks

Figure 3. The effect of increasing communication opportunities on rover exploration speed

We simulated traverses with communication opportunities at fixed time intervals and placed
rocks along a straight-line path according to a Poisson distribution. The intervals between
communication opportunities and number of total rocks were varied for each run. Figure 3
shows a plot of how the rover’s exploration speed approaches the optimal as the number of
communications opportunities increases with respect to the number of rocks. Adaptive
communications allows the rover to take advantage of opportunities that were previously
unscheduled. This does not mean that additional bandwidth to Earth is required since only the
needed opportunities are taken. By giving more opportunities, the overall performance is
increased. For example, if the communications opportunities are doubled (moving the x-axis
ratio from 1.0 to 2.0 in the figure), there is a potential increase from 0.5 to 0.6 (y-axis) in the
normalized exploration speed of the rover, resulting in a 20% increase in science return.

Rover Communication Performance
In some situations a rover must sit idle while waiting on a response from Earth. For example,

using the Rock Abrasion Tool (RAT) can take as long as nine days because of uncertainties of
executing a long sequence of grinding, drilling, sampling, and measuring and the delays of
communication in getting new sequences from ground. Thus, reducing the delay between the
need for communication and getting a response is of great interest to Mars missions.

Using information about the duration and frequency of orbiter passes as well as cross-link
intervals between orbiters and Earth, we simulated the transfer of data from a rover to Earth with
potential routing through orbiters or a direct-to-Earth (DTE) link. Passes of MGS and Odyssey
with rovers is 10 minutes in duration, and Mars Express is 8 minutes with rovers.
Communication delays are 20 minutes with Earth and 1 second otherwise. Figure 4 shows mean
delivery times (in seconds) to Earth for 1000 simulations per point of four routing cases based on

7

1.

1.

E

‘3 - 1..
0 cn
Y

d

5

0 1..

F

E

I

0.

0.

0.

1 o4 .

- ..,.?.e

_ _ - - - -
/.?. *

- _ _ - - - - - - -

I / ‘/ ..

statidrouted , . . - .
,-

. . . . - \ . \ ; ; . I
dvnamiddirect I

I I I &.o% upper CI I Y/ ’
95.0% IowerCl

.

I I I I I I I I

2 3 4 5 6 7 8 9
Ratio of Available to Scheduled Windows

Figure 5 . Improvement of adaptive rescheduling in delivery time from rover to Earth

varying numbers of scheduled communications and possible windows of opportunity. “Static”
means that only scheduled links can be used, and “dynamic” means that any window can be
adaptively scheduled on the fly. “Direct” means that the rover can only use DTE
communications, and “routed” means that it can route through orbiters. Dashed lines show the
95% confidence interval, indicating variance. Outliers skew the mean and cause the jaggedness
of the plot. Here we assume that all DTE opportunities are scheduled, so the statiddirect and
dynamiddirect cases are the same.

The difference in the statidrouted and dynamidrouted is the performance improvement for
rescheduling communications on the fly. For a ratio of one (where all windows are scheduled),
performance is the same (as expected), a little over 5000 seconds (about an hour and a half). For
fewer scheduled windows, the performance quickly degrades and approaches the DTE plot (at
the top) of ranging just below five hours. The difference in the statidrouted and the DTE plot
shows the performance improvement of routing through orbiters as the number of scheduled
routing opportunities decreases.

Mars Network Experiments
A rover can take advantage of sending data to an over-passing orbiter with minimal

negotiation. The orbiter can weigh the priority of the rover’s data with the orbiter’s current
resource needs and decide whether it will agree to relay the data. We have assumed that the
orbiters always agree to route the rover’s data in the above experiments. However, once they
have agreed to the new communications goal, the network of spacecraft may need to reschedule

8

other communications. But, how long does it take for the network to reach consensus on a new
schedule based on the addition of a goal?

We performed experiments for the Mars network given the same communication scheme for
the previous simulation to see how long the distributed network scheduler could reach consensus
upon the addition of a new communications goal. The passing of time was simulated, and
coordination messages were routed through SHAC according to the availability communication
windows. We modeled SHAC similar to that at the end of the Distributed Scheduling section.
To simulate the slowdown of flight processors, we need time to pass around 500-1000 times
faster than real time. Since all five spacecraft were run on the same workstation in these
experiments, we simulated time passing 100 times faster than system time for a slowdown factor
of 500, roughly. Measurements were made in both cpu seconds and actual seconds while
simulating time. Replanning cycles (1 for each SHAC cycle) were restricted to 20 ASPEN
iterations, and when there were no remaining conflicts, SHAC slept for 0.1 seconds (10
simulated seconds) between cycles. Results for 5 problems are reported for each number of
goals ranging between 3 and 20. These numbers are of communication goals for each spacecraft
over a 3-day horizon. Goals were randomly generated with data size ranging between 2 and 100
Kbits, with delivery deadlines ranging between 40,000 and 100,000 seconds (-1 1 to 28 hours),
and with random destinations to either Earth or a rover (but rovers always send to Earth). Once a
schedule was generated, another goal was added for a random spacecraft at a random time in
order to measure the effort in reaching consensus for an unexpected event.

250

200

150

I00

50

0

number of goals per spacecraft

Figure 7. Actual time to re-schedule for a single goal

Figures 6 through 9 show the results of rescheduling for one goal added to the system. Each
point in the plots is a mean, min, or max value for the five spacecraft. Figure 6 shows that cpu
time is limited to less than 200 seconds for a spacecraft. On a flight processor, this translates to
100,000 to 200,000 seconds, or 28 to 56 hours. The mean maximum time is between 4 to 30
seconds, or 1 to 14 hours. The system time in Figure 7 shows that on average, the system

9

reaches consensus in less than an hour (according to the max time trend line), but it can take a
little more than 200 actual seconds in some cases. We must multiply this by the simulation
speedup factor of 100; thus, the approximate maximum time onboard for this problem set would
be roughly 56 hours. This means that without careful coordination, activities scheduled within
56 hours of the unexpected event could be executed inconsistently with respect to other
spacecraft. To resolve this problem, the spacecraft should switch to a simpler protocol with real-
time consensus guarantees for activities soon to be executed. Although not employed in this
application, an algorithm for determining when this switch should occur (based on the time of
the activity, communication windows, and the routing required by the simpler protocol) is
described in [3]. Communication overhead for reaching consensus ranged to at most 25
messages and 18 kilobytes. Many of the goals could be resolved locally, requiring no
communication. Although not shown here, initial schedule generation (applicable to
collaborative ground planning) averaged 25 cpu seconds, 102 actual seconds, 91 messages, and
55 kilobytes per spacecraft. The actual time (to reach consensus) ranges from seconds to 50
minutes.

6. Conclusion
This report described software for onboard distributed scheduling of communications among

a network of spacecraft in a fashion. The distributed network scheduler enables reactive
communications within the context of scheduled operations by autonomously negotiating over
communication changes. In addition, the scheduling system can generate schedules using the
same negotiation mechanisms to enable missions (such as the many for Mars) to collaboratively
schedule communications on the ground. Evaluations were based on models of MER-A, MER-
B, MGS, Odyssey, and Mars Express. Our main results include:
+ simulation showing a maximum opportunity of improving traverse exploration rate by a

factor of three;
+ simulation showing reduction in one-way delivery times from a rover to Earth from as much

as 5 to 1.5 hours;
+ simulated onboard response to unexpected events averages under an hour; and
+ ground schedule generation ranging from seconds to 50 minutes for 15 to 100 goals

Future work includes extending the software to schedule during execution using varied
protocols to give real-time consensus guarantees and integrating the software with a realistic
communications simulator.

7. References
[13 1. Akyildiz, 0. Akan , C Chen, J. Fang, W. Su. InterPlaNetary Internet: state-of-the-art and

research challenges. Computer Networks 43 (2003) 75-1 12.
[2] S. Chien, R. Knight, A. Stechert, R. Shenvood, G. Rabideau. Using Iterative Repair to

Improve Responsiveness of Planning and Scheduling. 5h International Conference on
Artificial Intelligence Planning Systems (AIPS 2000). Breckenridge, CO. April 2000.

International Conference on Autonomous and Multi-Agent Systems (AAMAS 2003).
Melbourne, Australia. July 2003.

Technical Document D- 1 5482, http://www-aig.jpl.nasa.gov/public/planning/aspen/.

[3] B. Clement, A. Barrett. Continual Coordination through Shared Activities. 2nd

[4] R. Shenvood, B. Engelhardt, G. Rabideau, S. Chien, R. Knight. ASPEN User’s Guide. JPL

10

http://www-aig.jpl.nasa.gov/public/planning/aspen

