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Abstract 
Distributed Network Scheduling is the scheduling of hture communications of a network by 

nodes in the network. This report details software for doing this onboard spacecraft in a remote 
network. While prior work on distributed scheduling has been applied to remote spacecraft 
networks, the software reported here focuses on modeling communication activities in greater 
detail and including quality of service constraints. Our main results are based on a Mars network 
of spacecraft and include identifying a maximum opportunity of improving traverse exploration 
rate by a factor of three; a simulation showing reduction in one-way delivery times from a rover 
to Earth from as much as 5 to 1.5 hours; simulated response to unexpected events averaging 
under an hour onboard; and ground schedule generation ranging from seconds to 50 minutes for 
15 to 100 communication goals. 

1, Introduction 
This paper focuses on issues of autonomously adapting communications for a remote network 

of spacecraft. If the spacecraft are designed to always guarantee available resources (e.g. 
transceivers, memory, power) to autonomously redirect communications on the fly, then in order 
to make such reactive communications autonomous, all that is needed onboard are control 
sequences for switching transceivers and slewing and routing algorithms for intermittent 
communication opportunities [ 11. Such spacecraft designs can be expensive since providing 
resources for all possible scenarios can incur significant additional vehicle mass. We investigate 
missions where communications resources are limited, requiring autonomous planning and 
execution. Unlike typical networks, spacecraft networks are also suited to automated planning 
and scheduling because many communications can be planned in advance. Because the network 
of spacecraft can represent multiple missions, missions will be reluctant to give up control of the 
spacecraft. Because communication among spacecraft is often intermittent (due to orbital and 
resource constraints), a spacecraft that can make scheduling decisions autonomously will be 
more responsive to unexpected events. Thus, a centralized planning system will not be sufficient 
to enable reactive communications, so we propose a distributed network scheduling system. 

The software automatically negotiates the rescheduling of these communications with other 
spacecraft while respecting constraints with communication resources (such as memory and 
transceiver availability). It provides an interface for a user or automated process to request 
communication service and to receive a reservation with updates on the expected or resulting 
quality of service (QoS). 

Figure 1 shows the architecture of the distributed network scheduling system. The middleware 
component provides an application-level interface to the communications protocol stack. It 
passes requests from users (e.g. mission operations staff, scientists), autonomous control 
systems, or other spacecraft to a distributed planning interface that manages the negotiation 
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Figure 1. Distributed network scheduler architecture 

process, and instantiates goals in the planner. The planner schedules communications to achieve 
the goal with help from adaptive communication algorithms. It does this by providing contextual 
information about the future network state and the communication goal in question. The 
adaptive algorithms then simulate and report how data will be transferred and with what quality 
of service (QoS). The distributed planning interface then returns the schedule and QoS 
information to the requestor as a reservation. Distributed planning also manages the negotiation 
of requests as the needs of the spacecraft change (as determined by the planner). Status of 
reservations are updated and reported as re-planning, negotiations, and execution of 
communication activities unfold. 

In the remainder of this document, we describe the interfaces of the architectural components 
and their implemented capabilities. We then show that the exploration rate of a rover (similar to 
Mars Science Laboratory - MSL) on a long traverse can be improved by no more than a factor of 
three with adaptive communications. We also simulate communications between a rover and 
Earth with orbiter relays to demonstrate reduced latency by as much as 3.5 hours. We then report 
experiments on a simulated Mars network of five spacecrafthovers to gauge the systems ability 
to reactively re-schedule communication activities in a distributed fashion. 

routing, 
protocol, 

2. Communication Requests, Reservations, and Status 

for the following variables: 
An application or user requests future communication from the network by providing values 

status/QoS 

in t id - index for tracking 
string source -who is sending data 
string destination -who is receiving the data 
int size - estimate of size of data to be sent in Kbits 
real bandwidth - min - minimum required bandwidth Kbits/s 
real bandwidth - max -maximum usable bandwidth in Kbitsh 
real priority - importance of hlfilling request (larger numbers indicate greater 
importance) 

vQoS decisions 

int 
int 
int 

distributed 
planning interface 

start- t ime-min - minimum requested start time of communication 
start - time-max - maximum requested start time of communication 
duration - min - minimum needed time duration of initial data transmission 

adaptive comm. 
interface 
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int duration - max - maximum requested time duration of initial data transmission 
int delivery - time-min - minimum required delivery time 
int delivery - time-max - maximum requested delivery time 
boo1 progressive - whether data is recreated as it is received (= true) or transmission 
is only valuable when completed, Le. all or nothing (= false) 
real loss - overall -maximum percentage loss tolerance of overall data 
real lossger-block -maximum percentage loss tolerance for any block 
real loss - block - size - size of block for which the loss tolerance is specified 
string protocol -what protocol(s) should be used for transmission and with what 
options (e.g. CFDP -noack); this string has no generic structure and is to be generated and 
interpreted by adaptive communications software through an interface. 

Upon receiving a request, the network will schedule ("reserve") the communication and reply 
with the expected quality of service for the same variables above and a real-valued 
percent delivered variable, indicating the percentage of the data delivered or expected to 
be delivered. Status during and upon completion of execution is also reported through the same 
construct . 

3. Local Scheduling 
We use CASPER to schedule communications according to constraints on memory, 

transceiver availability, and available windows of communication between scheduling nodes 
(spacecraft). The main activities scheduled are send, receive, and relay, for transmitting, 
receiving, and relaying data files. Segmentation and reassembly of files is supported for when 
files are too large to be sent in available communication windows. In addition, scheduling 
supports cut-through switching, receiving and relaying a file simultaneously when multiple 
transceivers are available. The timing and duration of activities takes into account constraints on 
communication delay and bandwidth. While quality of service estimateshtatus is propagated 
through the network, the scheduler currently does not handle failures, such as over-tolerance data 
loss. 

Scheduler Activities 
The main activities we use to model data transfer are send, transmit, receive, and 

relay. The send activity recursively decomposes into a series of transmit activities for 
segmentation of the file transfer. It also includes a free - memory activity following each 
transmit where the amount of data sent is replenished to a memory resource at a time 
indicated by a f ree-type parameter, which has one of the following values: 'never" I 'on 
transmission" I 'on de 1 ivery'! , "on - custody - xfer. " If 'on 
transmission, It the memory is freed at the end of the transmit activity. If "on 
delivery, memory is freed at the end of the receive activity of the receiving node. The 
"on - custody - xf er" value is intended to support custody transfer protocols that are not yet 
implemented. 

When one node is executing the send activity, the receiving node executes a 
The relay activity decomposes into a receive activity. If the receiving 

re 1 ay activity. 
node is not the 
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intended destination of the file, then the relay activity also decomposes into a send activity, 
routing the data elsewhere. 

The transmit and receive activities are constrained to be scheduled only during 
available communication windows, which are modeled as states having “in-vi ew” and 
“out - -  of view” values over time intervals provided by the system designer. These activities 
also must reserve a transceiver resource from a set provided by the system designer. The 
adaptive communication algorithms (shown in Figure 1) provides the assignment algorithm. The 
receive activity also consumes memory of the amount of the data received. 

Delay between the start of the send and receive activities between pairs of nodes is 
specified through an adaptive communications function. Cut-through switching is implemented 
in the relay activity. This is where a file is received and transmitted simultaneously. The start 
of the send sub-activity (of relay) is computed according to the start of the receive sub- 
activity and the data rates of both receive and send such that data blocks are not sent before 
they received. These activities and resources are modeled in the ASPEN (Activity Scheduling 
and Planning Environment) modeling language [4]. 

The interface to adaptive communication algorithms (shown in Figure 1) is simply the 
provision of many of the dependency functions in the above activities. Again, these functions 
could be provided in a middleware communication layer. 

Resources and States 
+ memory - Decisions about when to store and delete data are based on memory availability. 
+ data - It may be important to keep track of whether particular data files are stored or deleted 

in case one needs retransmission due to an unexpected failure. 
+ antenna(s) - Spacecraft can only communicate with one (or maybe two) others at a time. 
+ communication windows - Spacecraft can only communicate when in view of each other. 
Obvious resources that are not considered are power and battery energy. We do not consider the 
network scheduler’s role to handle these other resources and assume that their safe use is 
guaranteed by ground operations or an onboard planning and execution system. 

Metrics 
The network scheduler currently reschedules to resolve conflicts, but can be extended to 
optimize the schedule according to summed priority of scheduled activities over a horizon by 
using ASPEN’S optimization framework. The network scheduler itself will be evaluated in 
simulation according to time to resolve new or changed requests. This will be compared to 
current techniques later in the Evaluation section. 

Adaptive Communication API 
The following functions (listed as dependencies in the model of the activities) should be 
implemented to decide how to adapt communication for a given context: 

string choose-antenna(my-name, protocol, requested-bandwidth) 

string route-to(sender, destination, protocol) 

real request-bandwidth(requested-bandwidth, sender, antenna, receiver, bandwidth) 

determine which antenna should be used according to the protocol and requested bandwidth 

determine to whom data should be routed next 

determine the appropriate bandwidth based on the protocol and the requested bandwidth 
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bool is-interruptible(protoco1) 

bool isgrogressive(protoco1) 
determine whether are not the transmission can be interrupted and continued later 

determine whether or not this protocol allows the file to be created as it is received 
(otherwise it is sent all-or-nothing) 

determine when the data can be cleared from memory (i.e. when custody is transferred); valid 
values are “never”, “on-transmission”, “on-delivery”, and “on-custody-xfer” 

determine the percentage of the data expected to be delivered 

determine the percentage loss of the overall image according to the protocol and the 
requested tolerance 

determine the maximum percentage loss of the image per block according to the protocol and 
the requested tolerance 

determine the expected bandwidth to be used by the sender’s protocol base on the request 

determine the protocol the sender should use for this request 

string get-free-type(protoco1) 

real replygercent-delivered(protoco1, duration, bandwidth, size,percent-delivered) 

real reply-loss-overall(protoco1, loss-tolerance-overall) 

real reply-lossger-block(protoco1, loss-toleranceger-block, loss-block-size) 

real calc-send-bandwidth(my-name, send-start-time, destination, receiver, antenna, 
requested-delivery-time, delivery-time-max, sendgrotocol) 

string get-sendgrotocol(my-name, send-start-time, destination, receiver, antenna, 
requested-delivery-time, delivery-time-max, send-bandwidth) 

4. Distributed Scheduling 
Scheduling is distributed by propagating information through the network to nodes that are 

affected and by giving each node some level of decision-making authority with respect to local 
scheduling. We use Shared Activity Coordination (SHAC) [3] to implement this. 

SHAC is an interface between planninghcheduling systems, a general algorithm for 
coordinating distributed planning, and a framework for designing and implementing more 
specific distributed planning algorithms. Within SHAC, a shared activity is an activity that some 
set of planners must collectively schedule. It can be a coordinated measurement, a team plan in 
which planners have different roles, a use of shared resources, or simply an information sharing 
mechanism. Planners are coordinated when they reach consensus on the shared activity. 
Consensus is achieved when they agree on values for members of the shared activity structure: 
+ Parameters: Shared variables (e.g. start time, duration, bandwidth) 
+ Constraints: Each planner’s constraints on parameter values 
+ Roles: Subset of planning agents assigned to roles 
+ Permissions: Variables that determine how each planner is allowed to add, remove, and 

modify a shared activity 
Roles determine how an agent participates in the shared activity. For example, a transmit role 

in a shared communication activity has different resource constraints than the receive role. Roles 
specify which agents share the activity and can determine permissions and the protocol used to 
govern the agent’s handling of the shared activity. Constraints can specify restrictions the agents 
have on the values of parameters. By propagating local constraints, agents can make scheduling 
choices that avoid conflicts with others without knowing the details of their plans. For example, 
an agent can send a constraint on the time windows of an activity as local scheduling constraints. 

Protocols (distributed planning algorithms) specify how constraints, roles, and permissions of 
the shared activities change over time and are used to resolve conflicts among the planners. For 
example, a round-robin protocol rotates permission assignments among the planners, giving 
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them each turns to replan the activity. A delegation protocol assigns and re-assigns agents to 
roles. Protocols are designed by sub-classing built-in and user-defined protocol classes. 

By constructing protocols and modeling the attributes of shared activities, a system designer 
specifies the autonomy of each agent with respect to decision-making and computation. A 
completely centralized approach gives one agent a role in each activity with full permissions. 
Decentralization is introduced when agents propagate constraints, when agents fulfill different 
roles, or when more than one agent has planning/scheduling permissions. The SHAC 
coordination algorithm (stated simply) is a continual loop of refiningheplanning, applying 
protocols to further modify shared activities, sending shared activity updates to the sharing 
planners, and integrating updates from others. The planner interface enables different existing 
planning tools to interact in this framework. 

SHAC is customized for the particular application domain. For a Mars network, we specified 
shared activities between pairs of spacecraft mapping transmit activities of one spacecraft to 
relay activities in another. Shred parameters include those of the requesdreservation. The 
roles specify which local activity (transmit or relay) corresponds to each agent (spacecraft) 
potentially participating. The transmitter is assigned a delegation protocol for choosing a 
spacecraft to relay the data. Other agents are assigned a subordination role. The subordination 
protocol will remove the agent from the shared activity’s roles with a specified probability if the 
agent is yet unable to successfully schedule the activity locally. This triggers the delegator to 
assign another subordinate. 

5. Evaluation 
The distributed network scheduler enables reactive communications within the context of 

scheduled operations by autonomously negotiating over communication changes. In addition, 
the scheduling system can generate schedules using the same negotiation mechanisms. This 
means that separate missions (such as the many studying Mars) can use this software to 
collaboratively schedule communications on the ground. A prototype network scheduling 
system was implemented for communication models of MER-A, MER-B, MGS (Mars Global 
Surveyor), Odyssey, and Mars Express. We give experimental results for this application 
domain after giving more theoretical results illustrating the benefits of adaptive communication 
for rover exploration that this system enables. 

Rover Exploration Performance 
Here we examine the science retum performance of a semi-autonomous rover investigating 

rocks during a long traverse between sites. We simulate a traverse based on early MSL scenarios 
where a rover has the ability to autonomously detect rocks of potential scientific interest, 
downlink images, and investigate based on commands returned after scientists have studied the 
images. The rover continues along its path and turns back to perform detailed measurements if 
commanded. Figure 2 illustrates how the rover must traverse the path three times in order to 
retum to the rock. In the worst case, a target rock is identified just after each communication 
opportunity causing the rover to traverse the entire distance three times. By providing more 
communication opportunities through adaptive rescheduling this backtracking can be reduced, 
resulting in a theoretical opportunity of threefold exploration speedup. 
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Figure 2. Rover backtracking to study a rock during a traverse 
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Figure 3. The effect of increasing communication opportunities on rover exploration speed 

We simulated traverses with communication opportunities at fixed time intervals and placed 
rocks along a straight-line path according to a Poisson distribution. The intervals between 
communication opportunities and number of total rocks were varied for each run. Figure 3 
shows a plot of how the rover’s exploration speed approaches the optimal as the number of 
communications opportunities increases with respect to the number of rocks. Adaptive 
communications allows the rover to take advantage of opportunities that were previously 
unscheduled. This does not mean that additional bandwidth to Earth is required since only the 
needed opportunities are taken. By giving more opportunities, the overall performance is 
increased. For example, if the communications opportunities are doubled (moving the x-axis 
ratio from 1.0 to 2.0 in the figure), there is a potential increase from 0.5 to 0.6 (y-axis) in the 
normalized exploration speed of the rover, resulting in a 20% increase in science return. 

Rover Communication Performance 
In some situations a rover must sit idle while waiting on a response from Earth. For example, 

using the Rock Abrasion Tool (RAT) can take as long as nine days because of uncertainties of 
executing a long sequence of grinding, drilling, sampling, and measuring and the delays of 
communication in getting new sequences from ground. Thus, reducing the delay between the 
need for communication and getting a response is of great interest to Mars missions. 

Using information about the duration and frequency of orbiter passes as well as cross-link 
intervals between orbiters and Earth, we simulated the transfer of data from a rover to Earth with 
potential routing through orbiters or a direct-to-Earth (DTE) link. Passes of MGS and Odyssey 
with rovers is 10 minutes in duration, and Mars Express is 8 minutes with rovers. 
Communication delays are 20 minutes with Earth and 1 second otherwise. Figure 4 shows mean 
delivery times (in seconds) to Earth for 1000 simulations per point of four routing cases based on 
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Figure 5 .  Improvement of adaptive rescheduling in delivery time from rover to Earth 

varying numbers of scheduled communications and possible windows of opportunity. “Static” 
means that only scheduled links can be used, and “dynamic” means that any window can be 
adaptively scheduled on the fly. “Direct” means that the rover can only use DTE 
communications, and “routed” means that it can route through orbiters. Dashed lines show the 
95% confidence interval, indicating variance. Outliers skew the mean and cause the jaggedness 
of the plot. Here we assume that all DTE opportunities are scheduled, so the statiddirect and 
dynamiddirect cases are the same. 

The difference in the statidrouted and dynamidrouted is the performance improvement for 
rescheduling communications on the fly. For a ratio of one (where all windows are scheduled), 
performance is the same (as expected), a little over 5000 seconds (about an hour and a half). For 
fewer scheduled windows, the performance quickly degrades and approaches the DTE plot (at 
the top) of ranging just below five hours. The difference in the statidrouted and the DTE plot 
shows the performance improvement of routing through orbiters as the number of scheduled 
routing opportunities decreases. 

Mars Network Experiments 
A rover can take advantage of sending data to an over-passing orbiter with minimal 

negotiation. The orbiter can weigh the priority of the rover’s data with the orbiter’s current 
resource needs and decide whether it will agree to relay the data. We have assumed that the 
orbiters always agree to route the rover’s data in the above experiments. However, once they 
have agreed to the new communications goal, the network of spacecraft may need to reschedule 
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other communications. But, how long does it take for the network to reach consensus on a new 
schedule based on the addition of a goal? 

We performed experiments for the Mars network given the same communication scheme for 
the previous simulation to see how long the distributed network scheduler could reach consensus 
upon the addition of a new communications goal. The passing of time was simulated, and 
coordination messages were routed through SHAC according to the availability communication 
windows. We modeled SHAC similar to that at the end of the Distributed Scheduling section. 
To simulate the slowdown of flight processors, we need time to pass around 500-1000 times 
faster than real time. Since all five spacecraft were run on the same workstation in these 
experiments, we simulated time passing 100 times faster than system time for a slowdown factor 
of 500, roughly. Measurements were made in both cpu seconds and actual seconds while 
simulating time. Replanning cycles (1 for each SHAC cycle) were restricted to 20 ASPEN 
iterations, and when there were no remaining conflicts, SHAC slept for 0.1 seconds (10 
simulated seconds) between cycles. Results for 5 problems are reported for each number of 
goals ranging between 3 and 20. These numbers are of communication goals for each spacecraft 
over a 3-day horizon. Goals were randomly generated with data size ranging between 2 and 100 
Kbits, with delivery deadlines ranging between 40,000 and 100,000 seconds (-1 1 to 28 hours), 
and with random destinations to either Earth or a rover (but rovers always send to Earth). Once a 
schedule was generated, another goal was added for a random spacecraft at a random time in 
order to measure the effort in reaching consensus for an unexpected event. 

250 

200 
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I00 

50 

0 
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Figure 7. Actual time to re-schedule for a single goal 

Figures 6 through 9 show the results of rescheduling for one goal added to the system. Each 
point in the plots is a mean, min, or max value for the five spacecraft. Figure 6 shows that cpu 
time is limited to less than 200 seconds for a spacecraft. On a flight processor, this translates to 
100,000 to 200,000 seconds, or 28 to 56 hours. The mean maximum time is between 4 to 30 
seconds, or 1 to 14 hours. The system time in Figure 7 shows that on average, the system 

9 



reaches consensus in less than an hour (according to the max time trend line), but it can take a 
little more than 200 actual seconds in some cases. We must multiply this by the simulation 
speedup factor of 100; thus, the approximate maximum time onboard for this problem set would 
be roughly 56 hours. This means that without careful coordination, activities scheduled within 
56 hours of the unexpected event could be executed inconsistently with respect to other 
spacecraft. To resolve this problem, the spacecraft should switch to a simpler protocol with real- 
time consensus guarantees for activities soon to be executed. Although not employed in this 
application, an algorithm for determining when this switch should occur (based on the time of 
the activity, communication windows, and the routing required by the simpler protocol) is 
described in [3]. Communication overhead for reaching consensus ranged to at most 25 
messages and 18 kilobytes. Many of the goals could be resolved locally, requiring no 
communication. Although not shown here, initial schedule generation (applicable to 
collaborative ground planning) averaged 25 cpu seconds, 102 actual seconds, 91 messages, and 
55 kilobytes per spacecraft. The actual time (to reach consensus) ranges from seconds to 50 
minutes. 

6. Conclusion 
This report described software for onboard distributed scheduling of communications among 

a network of spacecraft in a fashion. The distributed network scheduler enables reactive 
communications within the context of scheduled operations by autonomously negotiating over 
communication changes. In addition, the scheduling system can generate schedules using the 
same negotiation mechanisms to enable missions (such as the many for Mars) to collaboratively 
schedule communications on the ground. Evaluations were based on models of MER-A, MER- 
B, MGS, Odyssey, and Mars Express. Our main results include: 
+ simulation showing a maximum opportunity of improving traverse exploration rate by a 

factor of three; 
+ simulation showing reduction in one-way delivery times from a rover to Earth from as much 

as 5 to 1.5 hours; 
+ simulated onboard response to unexpected events averages under an hour; and 
+ ground schedule generation ranging from seconds to 50 minutes for 15 to 100 goals 

Future work includes extending the software to schedule during execution using varied 
protocols to give real-time consensus guarantees and integrating the software with a realistic 
communications simulator. 
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