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Abstract 

There is an increasing need for space missions to be able to collaboratively (and competitively) 
develop plans both within and across missions. In addition, interacting spacecraft that interleave 
onboard planning and execution must reach consensus on their commitments to each other prior to 
execution. In domains where missions have varying degrees of interaction and different constraints 
on communication and computation, the missions will require different coordination protocols in 
order to efficiently reach consensus within their imposed deadlines. We describe a Shared Ac- 
tivity Coordination (SHAC) framework that provides a decentralized algorithm for negotiating the 
scheduling of shared activities over the lifetimes of multiple agents and a foundation for customizing 
protocols for negotiating planner interactions. We investigate variations of a few simple protocols 
based on argumentation and distributed constraint satisfaction techniques and evaluate their abili- 
ties to reach consistent solutions according to computation, time, and communication costs in an 
abstract domain where spacecraft propose joint measurements. 

1 Introduction 
When interleaving planning and execution, an agent adjusts its planned activities as it gathers infor- 

mation about the environment and encounters unexpected events. Interacting agents coordinate these 
adjustments to manage commitments with each other. Demand for this kind of autonomous agent tech- 
nology is growing for space applications. Autonomous spacecraft promise new capabilities and cost 
improvements in exploring the solar system. Spacecraft (and rovers) that explore other planets have 
intermittent, delayed communication with Earth, requiring that they be able to manage their resources 
and operate for long periods in isolation. 

In addition, there is a growing trend toward multi-spacecraft missions. These spacecraft will coor- 
dinate measurements, share data, and route data to and form Earth. Separate missions, such as those 
to Mars have their own budgets, experiments, and operations teams. As such, the spacecraft represent 
self-interested entities that benefit from collaborative interactions. 

But, even a single spacecraft has multiple science instruments for executing different goals of dif- 
ferent scientists, and different operations groups will have different areas of expertise over different 
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Figure 1 : Shared activity coordination 

subsystems for control. These different groups negotiate over mission plans in the same way that dif- 
ferent Mars missions must collaborate over spacecraft interactions. Whether this negotiation is done 
on-board or on Earth, there is a distributed operations planning problem that benefits from automation. 
Both also have real-time aspects. On-board systems must plan safely over near- and long-term hori- 
zons, and ground systems must also replan based on changing contexts in daily, weekly, and lifelong 
mission exercises. Ground planning also suffers from communication constraints. Scientists from dif- 
ferent universities or opposite sides of the globe will intermittently provide inputs and respond on an 
irregular basis. A collaborationhegotiation system must be built around communication constraints to 
meet hard deadlines for coming to consensus on consistent operations plans. 

The field of multiagent planning has largely focused on hlly cooperative planning and execution 
[5, 6, 15, 9, 31. Market-based agent systems address near-term resource negotiation but have rarely 
addressed how near-term decisions affect longer-term goals. Multiagent systems built for Robocup 
Soccer competitions mainly address collaborative multiagent execution in an adversarial environment 
and have limited planning capabilities. These approaches do not adequately address real-time planning 
for self-interested agents. 

Argumentation is a technique for negotiating joint beliefs or intentions [ 1 11 among cooperative or 
self-interested agents. Commonly, one agent makes a proposal to others with justifications. The others 
evaluate the argument and either accept it or counter-propose with added justifications. This technique 
has been applied to teamwork negotiation to form teams, reorganize teams, and resolve conflicts over 
members’ beliefs [16]. It can also be used to establish consensus on shared activities. 

We present a framework for Shared Activity Coordination (SHAC) based on argumentation tech- 
niques for negotiation. SHAC consists of an algorithm for continually coordinating agents and a foun- 
dation for rapidly designing and implementing coordination protocols based on a model of shared 
activities. The treatment of reaching consensus in real-time is discussed in [2]. We describe dis- 
tributed planning mechanisms (protocols) built on ideas of argumentation and one based on distributed 
constraint satisfaction techniques employing argumentation [lo]. We evaluate them according to com- 
putation, time, and communication costs in a distributed spacecraft domain where joint measurements 
are proposed, and capabilities applied are negotiated. Our ultimate goal is to create interacting agents 
that autonomously adjust their coordination protocols with respect to unexpected events and changes in 
communication or computation constraints so that the agents can most efficiently achieve their goals. 



2 SHAC 
Our approach, called Shared Activity Coordination (SHAC), provides a general algorithm for interleav- 
ing planning and the exchange of plan information based on shared activities. Agents coordinate their 
plans by establishing consensus on the parameters of shared activities. Figure 1 illustrates this approach 
where three agents share one activity and two share another. The constraints denote equality require- 
ments between shared activity parameters in different agents. The left vertical box over each planner’s 
schedule represents a commit window that moves along with the current time. A consensus window is 
shown to the right of the commit window, within which consensus must be quickly established before 
committing. Since consensus is hard to maintain when all agents can modify a shared activity’s param- 
eters at the same time, agents must participate in different coordination roles that specify which agent 
has control of the activity. As shown in the figure, SHAC interacts with the planning and execution by 
propagating changes to the activities, including their parameters and constraints on the values of those 
parameters. 

2.1 Shared Activities 
The model of a shared activity is meant to capture the information that agents must share, including con- 
trol mechanisms for changing that information. A shared activity is a tuple (parameters, agent roles, 
protocols, decomposition, constraints). The parameters are the shared variables and current values 
over which agents must reach consensus by the time the activity executes. The agent roles determine 
the local activity of each agent corresponding to the joint action. To provide flexible coordination rela- 
tionships, the role activities of the shared activity can have different conditions and effects as specified 
by the local planning model. The shared parameters map to local parameters in the role activity. 

For example, a shared data communication activity can map to a receive role activity for one 
agent and a send role activity for another. Shared parameters could specify the start time, duration, 
transfer rate, and data size of the activity. The data size is depleted from the sender’s memory resource 
but added to the receiver’s memory. The agents could have separate power usages for transmitting and 
receiving. 

Protocols are the mechanisms assigned to each agent (or role) that allow the agents to change 
constraints on the shared activity, the set of agents assigned to the activity, and their roles. Constraints 
will be described in the next section, and a variety of protocols will be defined in the Protocols section. 

The shared decomposition enables agents to select different team methods for accomplishing a 
higher level shared goal. Specifically, the decomposition is a set of shared subactivities. The agents 
can choose the decomposition from a pre-specified set of subactivity lists. For example, a joint ob- 
servation among orbiters could decompose into either (measure, process image, downl ink) or 
(measure, downl ink). 

2.2 Constraints 
Constraints are created by agents’ protocols to restrict sets of values for parameters (parameter con- 
straints) and permissions for manipulating the parameters, changing constraints on the parameters, 
and scheduling shared activities (permission constraints). These constraints restrict the privileges (or 
responsibilities) of agents in making coordinated planning decisions. By communicating constraints, 
protocols can come to agreement on the scheduling of an activity without sharing all details of their 
local plans. 



Given: a plan with multiple activities including a set of sharedactivities with constraints and a 
projection ofplan into the future. 

1. Revise projection using the currently perceived state and any newly added goal activities. 
2. Alter plan and projection while honoring constraints. 
3. Release relevant near-term activities ofplan to the real-time execution system. 
4. For each shared activity in sharedactivities, 

5.  Communicate changes in sharedactivities. 
6.  Update sharedactivities based on received communications. 
7. Go to 1. 

apply each associated protocol to modify the shared activity; 

Figure 2: Shared activity coordination algorithm 

A parameter constraint is a tuple (agent, parameter, value set). The agent denotes who cre- 
ated the constraint. Some protocols differentiate their treatment of constraints based on the agent that 
created them. For example, the asynchronous weak commitment algorithm prioritizes agents so that 
lower-priority agents only conform to higher-priority agent constraints [ 171. Agents can add to their 
constraints on a parameter, replace constraints, or cancel them. A string parameter constraint, for exam- 
ple, can restrict a parameter to a specific set of strings. An integer or floating point variable constraint 
is a set of disjoint ranges of numbers. Scheduling constraints can be represented as constraints on a 
start time integer parameter. 

Permission constraints determine how an agent’s planner is allowed to manipulate shared activi- 
ties. Permissions can be defined for adding, moving, deleting, choosing refinements, or modifying 
parameters of a shared activity. 

2.3 Coordination Algorithm 
The purpose of the SHAC algorithm is to negotiate the scheduling and parameters of shared activities 
until consensus is reached. Figure 2 gives a general specification of the algorithm. SHAC is imple- 
mented separate from the planner, so steps 1 through 3 are handled by the planner through an interface 
to SHAC. Step 4 invokes the protocols that potentially make changes to refocus coordination on resolv- 
ing shared activity conflicts and improving plan utility. SHAC sends modifications of shared activities 
and constraints to sharing agents in step 5 .  In step 6, shared activities and constraints are updated based 
on changes received from other agents. 

3 Protocols 
In general, protocols determine when to communicate, what to communicate, and how to process re- 
ceived communication. During each iteration of the loop of the coordination algorithm (Figure 2), the 
protocol determines what to communicate and how to process communication. A protocol is defined 
by how it implements the following procedures to be called during step 4 of the SHAC coordination 
algorithm for the shared activity to which it is assigned: 

1. modify permissions of the sharing agents 
2. modify locally generated parameter constraints 
3. adddelete agents sharing the activity 



4. change roles of sharing agents 

The default protocol, representing a base class from which other protocols inherit, does nothing for 
these methods. However, even with this passive protocol, the SHAC algorithm still provides several 
capabilities: 

joint intention A shared activity by itself represents a joint intention among the sharing agents. 
mutual belief Parameters or state assertions of shared activities can be updated by sharing agents to 

resource sharing Sharing agents can have identical constraints on shared states or resources. 
active/passive roles Some sharing agents can have active roles with execution primitives while others 

mastedslave roles A master agent can have permission to schedule/modify an activity that a slave 

For convenience, we will refer to this abstract protocol as chaos because it can allow multiple agents 
to make changes to the same shared activity concurrently. This can lead to thrashing if the agents undo 
each others contributions to solving the problem. This can also lead to inconsistent information. For 
example, if agent A sends “x = 0” to B and C, B gets A’s message and sends “x = 1” to A and 
C, and C gets B’s message before A’s, then C will believe x = 0 while A and B believe x = 1. 
If unchecked, the agents may incorrectly believe consensus has been reached. This is a violation of 
causaZ consistency [13]. An additional requirement is that messages from any one agent are received 
in the order sent. This is atomic consistency. For our experiments, we use TCP/IP communications, 
which only guarantee atomic consistency. 

The following sections describe some subclasses of this abstract protocol focusing on regulating 
control through permissions. These protocols can be further adapted in their handling of constraints 
and agent roles, as will be discussed in Section 4. These are the basic ingredients of argumentation- 
based negotiation. 

establish consensus over shared information. 

have passive roles without execution primitives. 

(which has no permissions) must plan around. 

3.1 Master/Slave Protocol 
While SHAC allows masters and slaves to be defined by initially specified permissions, we briefly 
describe a protocol subclass from which others that we discuss inherit. This masterhlave protocol 
avoids the thrashing and consistency problem of chaos by only giving one agent permission to modify 
the activity. It simply assigns the creator of a shared activity the master and all others slaves. Slaves 
sometimes need basic permissions on a shared activity in order to add them to the plan. For example, 
in interfacing to the ASPEN planning system, we found that a “detail” permission was needed to refine 
a goal into detailed activities. Master and slave permissions are initialized for each shared activity type 
and assigned to the agents at activity instantiation. 

This protocol is appropriate for centralizing decisions at the level of a shared activity. Slave agents 
must trust the master and are thus cooperative. A problem with this protocol is that the master may not 
receive enough information about the local constraints of the other agents in order to find a solution. 
Without feedback from the slaves, the master can settle on a locally consistent solution and not know 
that its choices cause irreparable flaws with the slaves. Thus, the search space can be limited, sacrificing 
both completeness and optimality. 

. 



3.2 Round Robin Protocol 
A round-robin approach to establishing consensus on a shared activity involves rotating a master role by 
changing permission constraints. This protocol gets around the search space limitation of masterhlave 
by enabling all sharing agents to contribute to the solution. Thus, this protocol is applicable to self- 
interested agents. Only one agent may modify the activity at a time and once finished, the agent can turn 
off its own permissions and turn them on for another agent (while sending out the update). The round 
robin protocol can inherit from the mastedslave protocol and can be implemented by the following 
method. time-elapsed can be a parameter of the shared activity that is updated by the current master 
agent. 

Round-Robin modifyPermissions method 
0 if have master permissions 

- update time-elapsed 
- if finished planning or time-elapsed > threshold 

* restrict self to slave permissions 
* add master permissions for next agent 
* set time-elapsed to 0 

3.3 Asynchronous Weak Commitment 
Multi-asynchronous weak commitment is an algorithm for solving distributed constraint satisfaction 
problems (DCSPs) that enables agents, each with a set of variables, to satisfy constraints between 
variables across and within agents [17]. Agents are prioritized, and their variables each initially have 
a zero priority. The values of lower priority variables are modified to satisfy constraints with values 
chosen for higher priority variables (with agent priorities as a tie breaker). If there is no value that 
satisfies the constraints, then the governing agent selects a value that minimizes violations with lower 
priority variables and raises the priority of the variable to one higher than the highest priority of the 
variables with which it has constraints, making the variable the highest ranking with its neighbors. The 
failing agent also sends a no-good to its neighbors, communicating the values of the subset of variables 
making the variable unassignable. An improvement on this method involves “propagating constraints” 
by sending valid values [lo]. 

This protocol is applicable to self-interested agents since they each contribute decisions when the 
neediest. This protocol can be adapted for planning agents. The variables are shared activity param- 
eters. The DCSP constraints are equals relations among agents sharing the activities. An agent’s 
protocol must keep track of a priority it assigns the shared activity, the priorities that the other sharing 
agents assign to the activity, and separate priorities for the agents themselves (for tie-breaking). These 
priorities can be parameters of the shared activity. A no-good message is a set of parameter constraints. 
Below are the protocol methods for updating permission constraints and rank and generating no-goods. 

Asynchronous Weak Commitment modifyPermissions method 
0 if have highest priority 

else 
- give self master permissions 

- restrict self to slave permissions 

Asynchronous Weak Commitment modifyconstraints method 
0 if cannot resolve local conflicts and conflicts with constraints of higher ranking agents 



- set rank parameter of self to highest rank of sharing agents plus one 
- generate no-good as a conjunction of other conflicting shared parameter values 

The asynchronous weak commitment algorithm for DCSPs is shown to be sound and complete- 
the agents are guaranteed to converge to valid assignments of values to variables if they exist. In 
SHAC there is no guarantee of completeness (convergence). This is because SHAC does not restrict 
the planners to be complete. Since continual planning requires reactivity to state changes and failures, 
completeness is difficult to ensure in real-time. Future work is needed to determine how AWC (and 
other protocols) can be combined with complete planners to ensure convergence. 

4 Protocol Evaluations 
We evaluate four protocols (chaos, masterhlave, round robin, and AWC) in an abstract domain where 
spacecraft propose joint measurements requiring specific capabilities. Each of the protocols are varied 
according to their use of constraints and the agents sharing the activities. The motivation is to see how 
well different argumentation strategies for cooperative and self-interested agents converge on consistent 
solutions according to time and communication overhead. 

Protocols are varied to generate constraints or not. The protocols are further varied to update con- 
straints every 1, 2, 5,  or 10 SHAC cycles. In addition, they are alternatively updated only when the 
current plan is in conflict with constraints. The set of sharing agents alternatively includes all agents or 
just the originating agent and the agent providing the requested capability. We will refer to the former 
as a broadcast protocol since shared activity updates are broadcast to all others. 

A joint measurement activity in our experimental domain requires some number of each type of 
capability and refines into concurrent activities, each consuming an agent’s capability. The agents’ 
capabilities each can only be used once at a time. A variation of the domain also restricts the agents 
to only be able to provide one capability at a time. The problem is to assign agents’ capabilities 
to requested joint measurements while meeting these constraints. Solvable problems are randomly 
generated with 3 to 9 agents, 1 to 7 capability types, and 1 to 9 joint measurements, each requiring 1 to 
4 of each capability type. This can result in a maximum of 252 shared activities. 

SHAC interfaces with the ASPEN planning system [I]. ASPEN is a heuristic iterative repair plan- 
ner that repeatedly chooses a flaw (or optimization criterion), chooses a repair method (such as add, 
move, or delete), chooses an activity, and applies the repair method to the activity to resolve the flaw 
(or improve utility:). The choices are governed by built-in or user-defined heuristics. Because this local 
search approach keeps no backtracking states, the no-goods employed by AWC are not critical to solv- 
ing problems. We implement AWC without no-goods, but our future work will evaluate strategies for 
managing them. 

ASPEN’S heuristics randomly choose agents to fulfill capabilities according to the agent’s local 
restrictions and also in accordance with any SHAC constraints collected from other agents. If there are 
no valid agent assignments, an new agent will be chosen randomly with 10% probability. In another 
domain variation, an agent can reason about the local constraints on capabilities of other agents based 
on the activities visible to it. 

Figure 3 shows the number of problems each solved within the time limit indicated on the x-axis 
for each protocol. For all protocol and domain variations, AWC outperforms the others with respect to 
CPU and actual clock time in converging on valid solutions. Chaos performs worse because it often 
returns inconsistent solutions due to the lack of causal consistency in message passing. Masterhlave 
fails to perform as well because of its inability to explore the full search space. Figure 4 shows that 
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masterhlave has the lowest communication overhead. This is not surprising since only one agent can 
send updates for any shared activity. Round robin has significantly higher overhead for its 400 easiest 
problems but is almost an order-of-magnitude less costly than chaos and AWC for problems of medium 
difficulty. This abrupt swing is due to its large performance difference when broadcasting and not. 

In Figure 5 we compare the protocols when all agents share the activities and when only those 
directly involved share. Here, we see that round robin outperforms all others when not broadcasting 
although similar to AWC. It is unclear why round robin performs so poorly when broadcasting. We 
speculate that the constant flood of incoming messages interferes with conflict resolution. AWC is also 
degraded by broadcasting, but chaos improves greatly because the inconsistencies are stamped out by 
the increased number of updates caused by broadcasting. 

The incorporation of constraints has mixed results for the protocols as shown in Figure 6 .  The proto- 
cols compared here each use the sharing strategy that works best for it. Round robin and chaos perform 
better without constraints. This could again be caused by additional communication overwhelming 
conflict resolution. For chaos, the propagation of constraints actually hurts its ability to return consis- 
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Figure 6: Problems solved with and without constraint propagation 

tent solutions. Masterlslave benefits from constraints because they allow the master to see the local 
constraints of slaves and cooperatively explore the global search space. AWC performs better on easier 
problems without constraints likely for the same reasons as round robin. However, for harder problems, 
constraints help AWC converge to solutions more quickly. This is consistent with DCSP results where 
propagating constraints improves performance because the agents are able to choose values that are 
more flexible with others. Thus, constraints enable more cooperative behavior, benefiting masterlslave 
and AWC. 

5 Discussion and Related Work 
Conflicts among a group of agents can be avoided by reducing or eliminating interactions by localizing 
plan effects to particular agents [ 121, and by merging the individual plans of agents by introducing 
synchronization actions [8]. In fact, planning and merging can be interleaved [7]. Earlier work studied 



interleaved planning and merging and decomposition in a distributed version of the NOAH planner 
[4] that focused on distributed problem solving. More recent research builds on these techniques by 
formalizing and reasoning about the plans of multiple agents at multiple levels of abstraction to localize 
interactions and prune unfi-uitful spaces during the search for coordinated global plans [3]. 

DSIPE [6] employs a centralized plan merging strategy for distributed planners for collaborative 
problem solving using human decision support. Like our approach, local and global views of planning 
problem help the planners coordinate the elaboration and repair of their plans. DSIPE provides insight 
into human involvement in the planning process as well as automatic information filtering for isolat- 
ing necessary information to share. While our approach relies on the domain modeler to specifl up 
ftont what information will be shared, SHAC supports a hlly decentralized framework and focuses on 
interleaved coordination and execution. 

In many ways this work is following the Generalized Partial Global Planning approach to using 
a mix of coordination protocols tailored for the domain [ 5 ] .  SHAC offers an alternative framework 
for separating implementation of these mechanisms from the planning algorithms employed by spe- 
cific agents. Unlike GPGP, SHAC provides a modular framework for combining lower-level mecha- 
nisms to create higher-level roles and protocols. Our future work will build on GPGP’s evaluations of 
mechanism variations to better understand how agents should coordinate for domains varying in agent 
interaction, communication constraints, and computation limitations. 

Finally, TEAMCORE provides a robust framework for developing and executing team plans 
[15, 141. This work also offers a decision-theoretic approach to reducing communication within a 
collaborative framework. Research is needed to investigate the integration of coordinated planning 
with robust coordinated execution. 

An assumption commonly made in multiagent research is that agents will be able to communicate 
at all times reliably. However, this is rarely the case with spacecraft that can only intermittently com- 
municate and have significant communication delays (e.g. with Earth). Guaranteeing consensus on 
beliefs and intentions is impossible without certain communication guarantees [ 131. Understanding the 
communication properties that make consensus possible and the overhead for establishing consensus is 
critical for multiagent research. 

6 Conclusion 
We introduced a distributed planning framework built on ideas of argumentation that is capable of 
continually coordinating planning agents. We described its capabilities and gave examples of argumen- 
tation mechanisms (protocols) built on these capabilities. We showed how variations of argumentation 
perform on joint measurement problems for interacting spacecraft. The round robin and AWC protocols 
generally avoid problems of consistency and limited search space encountered by simpler approaches. 
The round robin exhibited the best balance of time and communication costs when the number of shar- 
ing agents was minimized but performed similar to AWC for the hardest problems. For problems it 
can solve, the masterhlave protocol uses the least communication overhead. The default unstructured 
SHAC protocol (chaos) shows promise if given causally consistent communication guarantees. Our 
future work is aimed at evaluating the benefits of other non-argumentation-based protocols with these 
for different classes of multiagent domains and examining real-time performance during execution. 
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