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Nomenclature

R | = real numbers

R™*™ =m X n real matrices

S =n X n real symmetric matrices

St = n X' n positive semidefinite matrices; also denoted as in P > 0

ST =mn X n positive definite matrices; also denoted asin P > 0

I, =n X n identity matrix '

Omxn =1m X n zero matrix

Ji = rigid body inertia along principle axis i (i = 1,2, 3)

A, J,Q,R,Q = constant real matrices ‘

q = unit quaternion; ¢ = [q1, g2, g3, 94 = [¢F, qu]”

VB,V = unit vectors describing the direction of instrument’s bore-sight
in body and inertial coordinate frames, respectively

wg, w =unit vectors describing directions of a celestial object or thrust
in body and inertial coordinate frames, respectively

u = control torque ‘

w = angular velocity vector

lz|l = 2-norm of vector , i.e., (z7x)!/?

B, = the set of vectors with 7 2-norm

]§,, = the set of vectors with 2-norm greater than or equal to 7

w = feasible set defined by quadratic constraints

g = angle (in degrees)

a,B,7,m,k,¢ = constant real numbers

k,M, = nonnegative constants

V,® . =repulsive potential functions

f9 = real-valued functions

s(ka, ks) = sum of indexed terms starting with index k, and ending with index %;

[to /] = maneuver time interval

At = sampling interval for time discretization

SC = spacecraft




‘I Introduction

The constrained attitude control (CAC) problem considered in this paper is as follows:
given initial and terminal conditions on the angular velocity vector w( ) and the attitude
quaternion ¢(t),

w(to), alte), and  wity), qlts),

w(t) = fwr(t), wa(), wsB)]” €R®, q(t) = [1(t), a2(t), a3(2), qa()]" € RY,

determine control torques u;(t) € R? (i = 1,2, 3) over the time interval ¢ € [t, t] subject
to: '

¢ dynamic constraints

Jrwi(t) = (J2 = Ja) wa(t) ws(t) u(t), )
Joa(t) — (J3 — J1) wa(t) wi(t) = ua(2), 2)
T3 s(t) — (J1 — Jo) wi(t) wa(t) = us(t), )

where J; is the rigid body inertia along principle axis i,

¢ bounded angular velocities and control torques, i.e., for given constants vy, v, > 0,

e norm preserving kinematic constraint -

i(t) = 3 2t) a(t), C
‘where
0 wilt) —ws(t) wilt)
—ws(t) 0 wi(t)  walt)

wa(t) —wi(t) 0 ws(t) |’
—wi(t) —wa(t) —ws(t) 0

Q(t) =

and ||q(t)|| = 1 forall ¢ € {tq t;], and finally,




e attitude constraints represented by

filg(®) < ¢o, forallt €t ty], 1=1,2,...,m, 6)

or
iy .

/t gla®)dt <, i=1,2...,m, 0

for the proper functions f; and g; (. = 1,...,m), constants ¢, ¢;, and time interval

[ta ) C [to ty]-

The CAC problem appears in almost every space science mission equipped with heat or
light sensitive instruments, e.g., cryogenically cooled infrared telescopes, star trackers,
and low energy ion composition analyzers. A representative set of such missions include
Cassini mission to Saturn,* FIRST/Planck,? and SAMPEX (Solar, Anomalous, and Mag-
netospheric Particle Explorer).® In all such missions, on-board sensitive instruments are
required to be protected from exposure to bright or heat generating objects. As a conse-

quence, all reorientation and re-targeting maneuvers have to be realized via solving the

constrained attitude control problem.

The attitude control problem in the absence of constraints (6)-(7), has of course been
extensively studied in the literature; see for example Ref, 4. On the contrary, systematic ap-
proaches to the constrained version of the problem can be found in a handful of references
despite its practical significance; these include Refs. 5-13. Our paper is a contribution to
this latter body of research. Specifically in this work, we first review several existing results
pertaining to the CAC problem. We then proceed to extend a recently proposed approach
to the problem and substantiate on its wide applicability and computational efficiency.

The organization of the paper is as follows. In §II, we categorize various classes of at-
titude constraints that typically appear in space science missions. An overview of existing
methods for solving these problems, including those relying on geometric constructions,
artificial potential functions, constraint monitoring, randomized motion planning, and fi-
nally semidefinite programming, is then provided. In §III, we present an approach, based
on semidefinite programming, for the general class of CAC problems. §IV concludes the -
paper with a representative set of simulation results that demonstrate the viability of the
framework developed in §III.

II Existing Frameworks

In this section we provide an overview of the existing frameworks for solving the CAC
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problem. Let us first categorize the attitude constraints into four distinct types.! These
include,

Type-I (static hard constraints): this class includes constraints imposed by celestial
objects that are relatively stationary with respect to an inertial coordinate frame. We
have in mind scenarios where there are strict non-exposure constraints on the on-
board sensitive instruments with respect to celestial objects as in Refs. 1-3 and 6-10,
or avoiding incoming particles around Saturn during ring-plane crossings,! and/or
orbital debris and micro-meteoroid fluxes as in Ref: 3. In all such settings, given
unit vectors v and w in the inertial coordinate frame, describing the direction of
instrument’s bore-sight and the bright celestial object, respectively, one requires that

v(t)Tw < cos (®)

at each time instance, where 6 is a required minimum angular separation; note that
the angle between v(t) and w is assumed to be in the range of [0, 7] without loss of
generality. :

Type-1II (static soft constraints): this category includes the relaxed version of Type-I
constraint above. In this case, violations of the inequality (8) are allowed, however,
only for a limited time interval. For instance, the cryogenically cooled telescope can
be exposed to an external heat source provided that the total heat exposure does not
accumulate to be beyond some maximally allowed level.® Such constraints can be
written in an integral form as '

ty
/t o(t)Tw| dt < ¢,

where ¢, is a fixed constant and the angle between v(t) and w is assumed to be in
the range of [0, 7].

Type-1II (dynamic constraints): these constraints have not explicitly been consid-
ered in past but they are of great importance in the context of multiple spacecraft
formation flying. Type-III constraints encompass scenarios where the plume gener-
ated by firing a particular thruster on one spacecraft results in damaging the sensitive
instruments mounted on another spacecraft. Note that in this case, the source of at-
titude constraints are themselves dynamic; in fact, they can be represented by the
inequality '
v(t)Tw(t) < cosé,

T As identifi ed by the authors after an extensive literature search.




with the standing assumption that the angle between the two vectors remain in the
range of [0, 7].

Type-IV (mixed constraints): in this last category, we include various possible com-
binations of the preceding three types of constraints. Most space science missions,
particularly those involving multiple spacecraft formation flying, have mixed attitude
constraints. Evidently, the presence of mixed constraints further complicates the re-
quired attitude maneuver planning and trajectory design for these missions.

II-A  Geometric Algorithms

The geometric approach, as exemplified in Refs. 6 — 7, relies on geometric relations be-
tween vectors v and w in (8) to handle constraints of Types I or II. The main ingredient of
this framework is determining a feasible attitude trajectory prior to initiating the reconfigu-
ration, if possible, or finding feasible attitudes whenever an avoidance maneuver is needed
during the course of the attitude slew (see Refs. 3 and 13). Generally in this venue an op-
timal or an easily implementable on-board control for the unconstrained attitude maneuver
between two arbitrary orientations is first considered. Then, the algorithm seeks an inter-
mediate attitude g(¢;) (2 way-point) between g(¢o) and g(t), such that the aforementioned
control strategy- without any constraint violation- can be applied for each time interval
[to t;] and [t; t;]. A typical example for such an approach- as found in Ref. 6- involves
finding a tangential exclusion path,

q(to) ~ q(t;) ~ q(ty),

- such that the unconstrained maneuver planning for each subdivision can easily be accom-
plished (Fig. 1). Another explicit way to determine feasible intermediate attitudes for Type-
I constraints is provided in Ref. 7. We note that although the geometric approach enjoys
a certain level of conceptual simplicity, it is mainly applicable to problems where only a
small number of constraints are present and selection of the attitude way-points is relatively
straightforward. ' ‘

II-B  Potential Function-based Algorithms

Potential functions have been recognized as one of the main tools for handling kinematic
constraints that arise not only in the CAC problem, but more generally, in a wide array of
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problems in robotics and related fields. The starting point for this approach as it pertains
to the CAC problem, is constructing one or multiple outward vectors with respect to the
constraints. Subsequently, one proceeds to linearly combine these vectors with appropriate
weights to generate a “repellent” control torque with respect to the constrained set. For
example in Ref. 8, the repulsive potential V, 4 is first defined by

Vas(8) =2 2;(0), ©)
=1
where
B(6) = ae P Lia G0,
with

1 sinf(t)tanby(t) cosbq(t)tanba(t)
6:(t)=>"10 cos 01 (t) —sin . (¢) w;(t),
=1 | 0 sinby(t)secls(t) cosb(¢)secby(t),

9 is the Euler angle, 0 is the attitude angle associated with Type-I constraint (8), parameters
« and @ shape the potential function, and m is the number of constraints. The potential V,, s
(9) is then combined with functions constructed for other purposes (e.g., to minimize the
maneuver time); the combination of these functions is then optimized at each time instance
to obtain slew maneuvers for the required attitude reconfiguration. An analogous approach
for obtaining constraint avoidance forces can be found in Ref. 7. Parallel to the same
line of reasoning, an interesting direction that has been pursued in the potential function
framework proceeds to characterize the set I' of forbidden attitude quaternions via two
orthonormal vectors z; and z;. The vectors 2;, 2, are then utilized in defining the repulsive
potential as

_ k(1 —qq)
)= Gy

=

where k is chosen as a positive constant.® Now since

(10)

g violates the constraints if (g7 2;)% + (g7 22)? = 0,

one expects that the repulsive control defined as

uk(q) = ;—a%a(q—),




yields the torque required for the constrained reorientation. One of the main draw backs
of this approach is that convergence to the target attitude can not be generally guaranteed.
- This is in light of the fact that superposition of potential functions of the form (10) of-
ten leads to functionals that are nonconvex.” Moreover, the existence of vectors z; and 25
above, nicely characterizing the constrained set, is not ensured particularly as the number
of Type-I constraints increases. :

II-C Constraint Monitor Algorithms

The constraint monitor approach, as its name suggests, is based on active monitoring
of constraint violations via the ground station or on-board computers. As presented in
Refs. 1, 10, the constraint monitor algorithms first identifies potential constraints that will
be violated if corrective actions are not taken during the attitude slew; if such constraints are
found, the algorithm subsequently guides the spacecraft to assume a feasible attitude from
a set of allowable orientations. In this regards, the constraint monitor algorithm resembles
those based on the geometric approach, however, it is characteristically more dynamic. This
approach has been successfully implemented on the Cassini mission;'° it has the advantage
of being applicable to various classes of attitude constraints. In the meantime, the issue of
convergence for the constraint monitor algorithm can only be addressed in a case by case
scenario. Generally, one needs to resort to extensive mission simulations to demonstrate
the viability of the algorithm. ' :

II-D Randomized Algorithms

Randomized motion planning algorithms have been introduced to solve the constrained at-
titude problem in Refs. 11 and 12. These algorithms are based on following ingredients: (1)
initialize a graph Gy consisting of a distinct vertex v, representing initial states q(%o), w(to),
(2) at iteration k + 1, perform a random search, starting from vy, to determine a set of fea-
sible vertices among the vertices of graph Gy, (3) select a feasible vertex, among those
found in (2) such that a given cost functional is minimized; call this vertex Vg1, (4) repeat
steps (2)-(3), now injtiated from vg.1; replace the index &k with k£ + 1. Iterate until the final
attitude ¢(ty) is achieved, (5) apply an optimal control torque for each attitude trajectory
subdivision found.

In Ref. 8, it is stated that the proposed approach applied to a single Type-I constraint has a guaranteed
convergence behavior.




The random search approach has the advantage that it can deal with all types of trajec-
tory constraints. However, one of its potential drawbacks is that convergence to the final
attitude can be guaranteed only in a probabilistic sense: it can shown that as the number of
vertices in the state graph increases, the probability of an incorrect termination exponen-
tially decays to zero. Meanwhile, we note that the computational effort in searching for a
feasible node at each time step increases dramatically as the size of the underlying graph
ZIrows.

II-E  Semidefinite Programming-based Algorithms

We conclude our overview by mentioning the recently proposed semidefinite program-
ming (SDP) approach to constrained attitude control.® This approach will be shortly elabo-
rated upon, as it provides the main theme for the present paper. The SDP approach essen-
tially exploits the nonlinearity of dynamics and kinematic constraints on one hand, and the
nonconvexity of attitude constraints on the other, to propose a convexified SDP formulation
of the original CAC problem. An SDP is the optimization problem involving a linear ob-
jective functional and a constrained set defined by linear matrix inequalities (LMIs).** An
LMI on the other hand, is an inequality over matrix variables, interpreted with respect to the
positive semidefinite ordering (see Nomenclature). The advantage of such an SDP formu-
lation of the CAC problem is not only its conceptual elegance, but also efficient solvability
via the available software, e.g., Ref. 15.

"III  SDP Approach to CAC

We first present the core idea behind the SDP approach to handle Type-I constraints before
delving into more complex situations arising in single and multiple spacecraft missions.

III-A  Type-1 Constraints

The SDP approach is based on the observation that Type-I constraints can be written in a
compact quadratic form parameterizing admissible quaternions.*° First recall that during
the attitude maneuver it is required to satisfy

v(t)Tw < cos¥, (1D

at each time instance, where the unit inertial vectors v and w, denote, respectively, the
instrument’s bore-sight and the bright, relatively stationary, celestial object; 6 is a minimum
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angular separation allowed between v(t) and w during the attitude slew and assumed to be
in the range of [0,7]. We now employ the coordinate transformation formula, relating
inertial and body vectors via the quaternion parameterization of the attitude,'®

v(t) = vB — 2(q; %) v5 + 2(¢; vB) 4o + 244 (VB X Go); (12)
in (12) we have adopted the notation

% = [q1, 2, a3]%,

and vp represents the inertial vector v in body coordinates. Combining (11) and (12), fol-
lowed by some algebraic operations, leads us to the equivalent quaternion characterization
of the constrained set,

()T Aq(t) <0, (13)
with |
A:= A(vp,w,0) = [ ;} Lbi ] e R¥4, (14)
and
A = vpw’ +wvh — (vEw + cos8) I,
b = wXwg, d;:=v5w—cosh.

Since the matrix A in (13) is not positive semidefinite, the set defined by inequality (13)
is nonconvex in the parameter ¢(¢). In order to derive an efficient algorithm for the CAC
problem, Ref. 5 proposes a convex optimization alternative to handle constraints of the
form (13). In this venue, the following proposition plays a crucial role, the proof of which
can be found in Ref. 5.

Proposition HL.1 Given matrices W; € S™, b; € R,i=1,2,...,m, andn > 0, let
W:={zeR"| s Wiz > b, i=1,2,...,m}NB,, (15)
be nonempty, where
B, :={z e R"|[lz] = n}.
Then x € B, is feasible for W if and only if it satisfies the LMIs

T

2 .
wn®=b, x .
— > —
[ x W}}"O’ i=1,...,m, (16)
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where
Wi = (/’L'LIn - VVZ')_I

and for each i, p; is strictly greater than the largest eigenvalue of W; (and thus VAVZ', W‘[l <
St

One of the key relations often used in the LMI literature, hiding behind the derivation of
LMIs (16), is the Schur complement formula stating that when A > 0,

A B >0

BT C
if and only if C — BTA™1B > 0; see Ref. 14. An extension of Proposition III.1, relaxing
the requirement that z € B,,, leads to the following LMI sufficiency conditions.®

Proposition II1.2 Let
B, :={z € R"|[z]| > n}. a7
Then x € ﬁ,, satisfying LMIs (16) is an element of W (15).

Propositions I1I.1 and III.2 are utilized in the context of constrained attitude control in the
following way. Since the spacecraft attitude has been parameterized in terms of quater-
nions, and the quaternion trajectory q(t) implicitly evolves on the unit ball By, Proposi-
tions III.1 can be employed to conclude that spacecraft constrained control attitude prob-
lem, as augmented with an arbitrary number of nonconvex Type-I constraints, can be rep-
resented by a (convex) SDP. In particular, this observation would completely solve the
constrained attitude control if one could seamlessly augment the nonlinear kinematic equa-
tions (5) to this SDP. However, as augmenting this differential nonlinear equality constraint
generally destroys the convexity of the corresponding feasible set, one needs to resort to
linearization of kinematic equations. Such a linearization scheme, on the other hand, in-
- troduces errors in quaternion updates and leads to the violation of the assumption that the
linearized attitude trajectory evolves on the unit ball. Nevertheless, the linearization er-
ror can be shown to be norm increasing, i.e., the approximate quaternion § is implicitly an
element of B, in Eq. (17) (see Ref. 5). In this case, Proposition IIL.2 can be utilized to guar-
antee that by solving LMIs in Eq. (16), in concert with the linearized kinematic equations,
the resulting attitude constraints are not violated during the maneuver, that is, ¢(t) € W
(Eq. 15) for t € [t t¢].
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One simple approach to the linearization of kinematic and dynamic equations proceeds
as follows: we consider the discretization of Egs. (1)-(3) and (5) as,

z(k+1) — z(k)
1) =~
| (t) AL
with proper sampling time At (At = 0.1 in our simulation examples of §IV): Putting it
all together, the convex optimization approach to constrained attitude control with Type-I
constraints assumes the following form: we iteratively solve the problem ng) :

I;](.}gl)’l « _ (18)
subject to
(k)T {HTA,H}z(k) <0, i=1,2,...,m,
or
wo (Ha(k)T .
[ Hz(k) (uilio+ 4)™ J 20 i=12..,m, (19)
> (B [ wgk) })T >0 (20)
E(k)? [ x(lk) ] Iy - |
Fk)z(k) = y(k), - @
|Giz(k)] < m[111]7, (22)
|Gz (k)] < m111], (23)

where E(k) € S, F(k) € R™!, Gy, G, € R and H € R*™. In Egs. (19)-(23)
we have :

[ Oaxs  Oaxz  Ozxsa = Ozxa
Osx3 I3 O3x4 w(V)
FEk) =
() Oncs Oses Opes  Oa
| 01><3 w(N)T 01)(4 w(N)Tw(N)

[ Ogxs Osxa Osx1
+ | Ouxs Q(_N)TQ(N) Osx1 |,

| Oixs O1x4 O1x1
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=AMLl T | Oga
F(k)“[ O |BGID] L |’

where
—aqu(k)  q3(k) —qa(k)
A 000 At "Zs(k) —qu(k)  q(k)
7= { o B0 FRET ) —a® k) |
¥ q1(k) g2(k) g3(k)
Gy = [ Osx3 I3 O3x4 ] , Gpi= [ I3 Ozx7 } ;
Ul(k) lel(k') + At (JQ - Jg) (.4)2(]1}) u)3(k)
’U,Q(k) Jz’wz(k) + At (Jg - Jl) Lt)3(k') Wy (k)
l‘(k‘) = U3(]C) , y(k’) = .]3’[1)3(]6) -+ At (J1 - .]2) w1 (IC) a)z(k) s
| w(k+1) w(k)
g(k+2) gk +1)

q4(éV)> quNg —@((1\;) “QIENg

—g3(N N N) —g(N

H=[00o Lo ], Q)= | 000 Z000 G —am) |
a(N)  @V)  @V) @)

i 1s chosen to be strictly greater than the largest eigenvalue of — A;; the matrix A; is as
defined in (14). In such a setup, the SDP Q' is solved for z(k),k=0,1,...,N—1, where
(At)N is the time interval [t, t¢] as des1gnated for the required reonentatlon Under the
assumption that for each & the problem o) b ") is fea51ble this approach offers convergence
guarantee to the final attitude, as the problems Q 1~ are convex programs. We note that
our convex representation remains valid as long as the errors introduced by linearization
are negligible; otherwise, the attitude quaternion is not guaranteed to remain on the unit
ball at each time step. As it was pointed out previously, in the presence of such errors, we
can still invoke Proposition II1.2 and enforce the attitude exclusion zone via the SDP (18)-
(23). As an alternative, one can prevent the propagation of linearization errors by using
actual dynamical state z(k), as opposed to those calculated from Q_(,k), as an input data for
next SDP iteration Q). For instance, given w(k + 1) obtained from O, exact unit
quaternion g(k + 2) can be computed using the equation

gk +2) = 329+ g 4 1), ez

13




where

0 w;:,(k) —wg(k’) w1 (k)

—CU3(]C) 0 wl(k) W2(k)

wa(k) —wi(k) 0 ws (k)
—wi(k) —ws(k) —ws(k) O

Q(k) =

We also note that other computational techniques for accurate quaternion updates are avail-
able (see Ref. 1), which can be used in conjunction with the proposed SDP approach. -

III-B  Type-II Constraints

We now consider Type-1I constraints of the form

ty T
/ o(t)Twdt < o1, 25)
ta :
or in its discretized form
kp . '
s(ka, kp) := Z v(k)Tw < ¢y, (26)
k=kq

where [t, tp] C [to tf] is the maneuver time interval during which we allow the constraint
violation v(¢)7w > cosd. In our short discussion of this class of constraints, we we will
implicitly assume that the desired minimum angular separation satisfies § € [0, 7/2]; how-
ever, the case of § € [r/2, 7] can be handled in the similar manner. As the SDP approach of
§III-A is inherently a step-by-step algorithm, let us consider its suitable extension allowing
us to address constraints of the form of Eq. (26). Our approach proceeds as follows:

1. if there are no constraint violations, solve the problem ng) without (19).

2. if the attitude constraint (13) is not satisfied at the k,-th step and the estimated sum
§(k,, ky)T is less than ¢, proceed with Step 1. Otherwise, solve SDP QY;), below,
repeatedly to escape the attitude exclusive zone:

min a+Mp 27
z(k) .

subject to

s(k)" {HTAH}z(k) < p, i=12,...,m,

TOne way to estimate s(kq, k3) is by directly integrating Egs. (1)-(3) and (5) with a pseudo control force.
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or equivalently the LMIs

ptf o (Hz(k)” - ~
He(k) (ulod A)-t | 20 i=Db2om (28)

in conjunction with Eq. (20)~(23), with M chosen as a large positive constant.

A moment reflection on the inclusion of parameter M in the objective functional (27) re-
veals that this modified objective ensures that the algorithm guides the spacecraft attitude
to leave the constrained region as quickly as possible. This on the other hand leads to an
attitude maneuver that respects the integral constraint (25) that characterizes Type-II con-
straints.

IHI-C Type-III Constraints
We now consider Type-III constraints of the form .
v(t)Tw(t) < cosd, ' (29)

where both vectors v and w are assumed to be controlled and time-varying. In view of the -
coordinate transformation in Eq. (12), we realize that Eq. (29) is no longer quadratic in the
corresponding attitude quaternions ¢* and ¢*, where by (12) one has

v(t) = va(t) = 2(g ()" g (1) va(®) +2 (5 () va(2)) 45 ()

+ 2} (o(t) X (D) (30)
w(t) = wa(t) - 2(gX(0) () wa(®) + 2(¢ () walt)) ¢*(?
+ 208 (1) (wa(t) x g¥(1). (D)

Nevertheless, we will shortly expand on few observations that make the SDP approach of
§III-A still viable for this more complex scenario. First recall that attitude constraints of
Type-III are of the form

T % B ][9] <2 s @

In the case where the quaternions are accurately updated, i.e., when both ¢%,¢* € By
apriori, one has

| [ Z;((?) J = (@) + lw®]?)z = V2.
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Thus
[w®)" w®)T]" € Bys,

and in view of Proposition I1I.1, Eq. (32) can be convexified as

T

, v(t)
2 esd) | wiy } >0, 33)

() 5

w(t)
where p is chosen such that
L O3xs I3 |\-1 _ an

D := (,uIs + l: I;  Osxs :’) c S_|_+. (34)

Let us now consider the scenario where the quaternions are updated via a linearization
scheme and thus’

gl =~ = 1.
Recall that by (30) one has

v(t) = va(t) + us(t)
where
un(t) = —2{aS(OT @)} vs() + 2 (B)Tos ()} 2(t) + 202(0){vs x B}
Note that when ¢(t) € By, ||[v(?)|| = ||vs|| = 1, and
@)1 = loa(®) +us @l = (v + 2vs(6) us(t) + lus @),
or in other words,
2up(t)Tup(t) = —|lup(t)||?>, forallt. (35)
Now returning to the case when it is only known that §(¢) € B, let

B(t) :==vp(t) + us(t),

T2 1

tWe will adopt the convention of putting on quantities that are approximate due to the linearization

scheme.
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where

ap(t) == —2{g ()7 ¢ () }va(t) + 2{g2 (&) va(t)}a () + 235 () {va(t) x G2(1)},
i.e., for the specific time instance ¢, one has @5(t) = y?up(t) with y > 1. Then,
l6@I* = lva(®) +as@®)? = [lva(t) + v*us ()|
= us®)I* +27*vs () un(t) +v*[lus ()|
= |lvs@®NI* + (+* - 1) lus @1
in view of Eq. (35), we conclude that

5@ > [lvsl?

which implies that

IE e

Thereby, even in the case where a linearization scheme is utilized for quaternions updates,
one has [(t) w(t)] € B /3> thus Proposition III.2 can be invoked to derive a sufficient LMI
condition enforcing the inequality (29). Furthermore, in order to include (30)-(31) in our
optimization framework, representing the relation between vectors represented in inertial
and body coordinate frames, we add an additional six quadratic inequalities to our SDP
formulation. As an example, for the first coordinate of v(t), v1(t), one can write

¢"(t)"CTq"(t) = vi(t) — (vahi(2),

where
0 (vg): (vg)s O
cv — | (vB)z —2(vsh 0 —(vB)s
! (vB)s 0 —2(vs)1 (vB)2

0 —(ug)s  (uB)s 0
and vg = [(vB)1, (uB)2, (vB)3]7, that can be represented by quadratic inequalities,
()" Clq"(t) 2 n(t) — (v)1, (36)
and
¢"(OTCYe"(t) < ni(t) — (w)s. 37
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Now Proposition III.1 can be applied to (36)-(37) in order to convexify these inequalities
by representing them as

v () .— | HFa—ut) + (v)B ¢'(t)"
Ly (t) = [ () (urly — C0)1 ] >0

and

v oy . | B2 oilt) = (v1) ¢ (t)"
-0 = { ¢“(?) ’ (w2ls + CT) ] =0

where 411 and y; are strictly greater than the largest eigenvalues of C? and —C? in (36)-(37),
respectively. Thus, our SDP formulation of the constrained attitude control with Type-III

constraints, involves iterations Q?})I of the form

min o’ +a¥
zv(k), 2w (k), v(k+2), w(k+2)
subject to
T
v(k+2)

2 (p+ cosb) w(k+2)} .

v(k+2) D -

| w(k+2)

L3, (k+2)>0, LY (k+2)>0, L¥%(k+2) >0, L¥(k+2)>0,

where D is defined by Eq. (34) and j € {1, 2, 3}, in conjunction with constraints (20)-(23)
associated with variables z*(k) and z* (k).

III-D Type-1V Constraints

The most remarkable feature of the SDP approach is its ability to handle various combi-
nations of all foregoing types of constraints while maintaining the guaranteed convergence
property. In this venue, we notice that all these constraints can accurately be represented
by LMIs. Such a representation, on the other hand, leads to a semidefinite programming
solution to a wide array of CAC problems augmented with mixed constraints. Table 1 sum-
marizes the applicability and convergence properties of the various algorithmic frameworks
for solving the CAC problem as considered in this paper.
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approach Type-1 | Type-1I | Type-III | Type-IV | convergence
geometric Vv - — — Vv
potential function v/ - - — —
constraint monitoring Vv N Vi Vv —
randomized v v/ v Vi —
SDP VAR VAN Y v v

Table 1: Applicability and convergence properties of the various frameworks for solving
the CAC problem.

v Siinulation Results

In this section, we present an example for solving a CAC problem subject to a Type-III con- -
straint via the SDP approach of §III. As mentioned in §II-A, multiple spacecraft formation
flying missions are of the main source of this class of problems. Specifically, we consider
the problem of constrained relative attitude control in a dual-spacecraft mission. The two
. spacecraft, denoted by SC; and SC,, have thrusters capable of providing control torques
aligned with each principal axes; SC; is assumed to have an on-board sensitive instrument.
Our objective is to find a sequence of control torques u(k) (k = 0,1,2,...), such that SC,
and SC; change their orientations from initial states (g1 (to),w: (o)) and (g2(to), wa(to)),
to final states (q;(ts),w1(ty)) and (ga(ts), wo(ts)), while the sensitive instrument on-board
SC; is not in a constrained cone around particular thrust directions emanating from SC,
during the entire attitude slew. The physical constants and the initial and terminal condi-
tions for our example are as follows: spacecraft masses are 1kg, principle axes of inertia

are
Diag [J1, J2, J3] = Diag [100, 200, 300] kg m?,

initial angular velocities,

wi(to) = wa(to) = [0,0,0]% rad/sec,
final angular velocities,

wi(ty) = @z(tf) = [0,0,0]7 rad/sec,
initial attitude quaternions,

a(to) = [0.0000,0.0000,0.0000,1.0000]7,
¢:(t) = [-0.5000,0.5000,0.5000,0.5000],
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final attitude quaternions,

ai(t;) = [—0.5000,0.5000,0.5000,0.5000]7,
g2(ts) = [0.0000,0.0000,0.0000, 1.0000],

the sensitive instrument vector in the body frame attached to SC; is,
vg = [0.750,0.433,0.500]%,
the thruster vectors in the body coordinate frame attached to SC, are,
(w1) =1[1,0,00", (w2)p=[0,1,0%, (ws)s=]0,0,1]T,

and finally, the required angular separation is required to be § = 50 deg. The initial and
the desired final attitude quaternions have been chosen to satisfy (29), i.e., the sensitive
instrument on SC; is outside the three constraint cones emanating from the bore-sight of
each thruster on SC,, or more precisely,

'u'(to)Twl(tO) < cosf (= 0.6428),
’U(to)T’wz (to) < cos 9,
v(to)Tws(te) < cosb,

where v and w;, w, wy are the inertially represented vectors corresponding to up and
(w1)B, (w2)B, (ws)Bp, respectively. Figure 2 depicts the geodesic distance to the final at-
titudes for SC; (solid line) and SC, (dotted line) under the guidance of the SDP-based
reconﬁguratlon algorithm. In Figure 3, each line represents the value of v(¢)Tw;(t) for

= 1 (solid line), 2 (dotted line), and 3 (dashed line). As seen in this figure, the con-
stramts v(t)Twy(t) < cosf and v(t)Twy(t) < cosé successively become active at 5.1 sec
and 29.8 sec, and the corresponding values of v(¢)Tw;(t) (i = 2, 1) stay constant at cos§ =
0.6428 until 699.3 sec and 810.8 sec, respectively. One interesting observation.is that the
value of v(t)Tws(t), where ¢ € [29.8 sec, 699.3 sec], remains constant even when the cor-
responding constraint does not explicitly become active during the maneuver. Figure 4
depicts the control torques about the z-axis exerted on SC; (solid line) and SC, (dotted
line). This figure also shows that once one of the constraints becomes active, two negative
control torques are automatically generated. In our example, as a remedy for the numerical
issues that were pointed out in §III-C, pertaining to quaternion updates at each time step,
Eq. (24) has been embedded in the proposed SPD-based framework.
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V  Concluding Remarks

In this paper, we first provided a survey of existing methods for solving the constrained
attitude control problem as it arises in a wide range of space science missions. The via-
bility of these approaches was then considered in the context of several types of attitude
constraints. Subsequently, the SDP-based approach was shown to provide a unifying venue
through which various classes of attitude constraints can be addressed via an elegant, effi-
ciently solvable optimization framework.
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Figure 1: A tangential exclusion path q(to) ~» ¢(t;) ~» ¢q(¢;) around the Sun (shaded area)
Figure 2: Geodesic deviation between current and final attitudes
for SC; (solid line) and SC, (dotted line)
Figure 3: The inner products between inertially represented sensitive instrument vector v(¢) and
thruster vectors w;(¢) (2 = 1,2, 3): v(¢)Twy (t) (solid line),
v(t)Tws(t) (dotted line), and v(t)Tws(t) (dashed line)
Figure 4:  Control torques about the z-axis exerted on SC; (solid line) and SC;, (dotted line)
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Figure 2: Geodesic deviation between current and final attitudes for SC; (solid line) and
SC; (dotted line).
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Figure 3: The inner products between inertially represented sensitive instrument vector v(t)
. and thruster vectors w;(t) (i = 1,2,3): v(t)Twy(¢) (solid line), v(¢)Twy(t) (dotted line),
and v(t)Tws(t) (dashed line). ‘
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Figure 4: Control torques about the z-axis exerted on SC; (solid line) and SC, (dotted line).
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