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Navigation is a key component of interplanetary missions and must continue to be precise
with the changing landscape of antenna design. Improvements for the Deep Space Network
(DSN) may include the use of antenna arrays to simulate the power of a larger single
antenna at much lower operating and construction costs. Therefore, it is necessary to test the
performance of arrayed antennas from a navigational point-of-view. This initial
investigation focuses on the performance of delta one-way range measurements using a
shorter baseline with more data collection then current systems use. With all other
parameters equal, the longer the baseline, the better the accuracy for navigation making the
number .of data packets very important. This trade study compares baseline distances
ranging from 1 to 1000 km with an in use baseline, Goldstone to Canberra, of the DSN. The
trade study also compares the direction of the baseline, looking at a due east baseline, a due
north b aseline and a b aseline at 45 d egrees E ast o f N orth. T he p recision o f the baseline
systems can be found through a simulated created for this purpose using the Jet Propulsion
Lab based Monte navigation and mission design tool. The simulation combines the delta one-
way range measurements with two-way range and two-way Doppler measurements and puts
the measurements through a Kalman filter to determine an orbit solution. Noise is added
along with initial errors to give the simulation realism. This study is an important step
towards the assessment of the utility of arrays for navigational purposes. The preliminary
results have showed a decrease in reliability as the baseline is shortened but the larger
continental baselines show comparable results to that of the current Goldstone to Canberra

Nomenclature

a = Doppler turnaround ratio

B = DOR baseline

B, = DOR baseline vector x-component

B, = DOR baseline vector y-component

B, = DOR baseline vector z-component

c = speed of light
Iz = Doppler frequency shift

Ir = Transmitter frequency

Z = ground station state vector

q = process noise on acceleration

Q = process noise matrix

r = magnitude of the vector from the center of the Earth to the spacecraft
. = spacecraft position vector

Z = ground station position vector
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§ = unit vector from center of the Earth to the spacecraft
T = Doppler step size

w = white noise

X = x-coordinate of the ground station

Vs = y-coordinate of the ground station

Z = z-coordinate of the ground station

p = range

Ty = DOR time measurement

I. Introduction

The Deep Space Network (DSN) is the communications architecture used for interplanetary spacecraft missions.
Run by the Jet Propulsion Laboratory (JPL), the network consists of three earth based stations located in
Madrid, Spain; Canberra, Australia; and Goldstone, California. At each of these stations there are a number of
different antennas consisting of one 34-meter diameter high efficiency antenna and one 34-meter beam waveguide
antenna (three at the Goldstone sight), one 26-meter antenna and one 70-meter antenna. These large dishes give the
DSN the power to communicate with spacecraft on interplanetary missions throughout the solar system.

The current configuration of the DSN has its share of problems, however. To build new antennas to improve
upon those currently available, larger and more expensive antennas would need to be built. The cost of these
antennas is driven by their size, with larger antennas requiring larger, more expensive motors and other such
components. To alleviate the need for large expensive antennas, studies have begun turning toward antenna arrays
using a number of smaller antennas to do the work of a large antenna.

Other benefits of the array structure include an increase in performance, as in the Galileo Mission where
scientific data return increased by a factor of three. There is a benefit to the operability in that when deficiencies for
a mission arise for a specific size antenna, one could easily partition the array to the size needed. When using single
antennas, a deficiency for a 34-meter antenna would require a move to a 70-meter antenna, creating among other
things, increased cost and the possibility of over-subscription on the larger antenna. The array format would allow
partitioning of the antennas into subsets alleviating the problem of over-subscription. There is also a benefit in the
area of flexibility because additional antennas can be added to increase the total aperture as the mission timeline
requires. This allows the required cost to be spread over time instead of being levied all at once.’

As for navigation, there are many questions that need to be answered. In order for the transition to an antenna
array to be worthwhile, the tracking accuracy must be at or close to current levels. This accuracy must hold for all
mission phases: cruise, launch, orbit insertion, re-entry, and landing. This could be affected by a number of factors
including the knowledge of the phase center of the array, using multiple baselines between antennas for
measurements instead of the array as a whole or even increased tracking time because the subscription on the
antennas is broken up among portions of the array.

There are numerous methods in use to determine the position and velocity of an orbiting spacecraft including,
two-way and three-way range, two-way and three-way Doppler, and very long baseline interferometry (VLBI).
Two-way and three-way range measurements are simple measurements of distance based on the round trip light time
of a signal sent to the spacecraft where in the three-way technique, the signal returns to a second ground station. The
two-way and three-way Doppler are techniques that interpret the phase shift of a signal sent to the spacecraft to
determine the speed and direction of the spacecraft, where the three-way version again returns to a second ground
station. VLBI enlists the services of two stations at very large distances apart on the Earth surface to give a delta
one-way range (DOR) measurement normally expressed by time in seconds.? The time represents the difference in
time it takes a signal to travel from the spacecraft to the two ground stations a concept that will be explained later.

The focus of this study will be on the use of two-way range, two-way Doppler, and DOR measurements to track
the Mars Exploration Rover (MER-B) spacecraft. The key component of the study comes from varying the baseline
and varying the data collection variables to determine if a shorter baseline that takes more measurements can be
used in place of the intercontinental baseline currently used for DOR measurements. The main idea is to determine if
the accuracy of the shorter baseline can be as good as the levels achieved by the long baseline of the current DSN.
Given a set of initial conditions the MER-B orbit will be propagated until the orbit determination filter is able to
converge. To accomplish the task of simulating the orbit determination process by taking actual measurements a set
of partials needs to be developed for each of the three measurement techniques. By using a navigation tool
developed at JPL known as the Mission-analysis, Operations, and Navigation Toolkit Environment (MONTE), the
orbit determination process will be simulated such that a trade study can be made concerning short baselines for
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Figure 1. MER-B transfer orbit.’ followed a short, direct transfer orbit

to Mars due to the close proximity
of Mars to Earth in the summer and fall of 2003. This paper will focus on the approach phase of the Mars transfer
orbit beginning approximately 90 days before atmospheric entry and ending approximately 30 days before entry.
This time period represents a basic part of the flight and will be used in many more robotic missions to Mars. This
maximizes the applicability of this study to future missions for which the DSN will be used.

II. Finding the Partials

To get an accurate representation of observed data, the partial derivatives of each measurement type need to
be determined with respect to the state elements of the spacecrafi-ground station system. The state vector for this
system is made up of twelve elements: the position and velocity terms of the spacecraft in Cartesian coordinates, and
the three Cartesian position elements of the ground stations. For two-way Doppler and range, the state elements of
the ground station not in use are set equal to zeros.

A. Two-Way Range Partials
The first measurement type is the two-way range. To find the partials, one needs to first look at the Cartesian

elements of the range. The range is a vector quantity that represents the difference between the spacecraft position
and the ground station position. The range defined in Cartesian coordinates is given by:

p=(x-x,y-y,2-z) @

The magnitude of the range gives a starting equation for the state partials:

p=AG-%) +(-y,) +E-z) )
Taking the derivative with respect to the first spacecraft state variable, x, results in:

o9 _ XX 3)

& e-xP+@-2) +E-2)

Similarly the partials for the y and z state variables are:
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From the above equation, one can see that the state partials vector for the position variables is equal to the unit
vector of the range, 5. The velocity terms do not appear in the equation for the range and therefore, their partials

are zero. This allows for a much simpler analysis for range measurements. A similar analysis to that for the
spacecraft state variables can be performed to show that the state partials vector for the ground stations is also the
unit vector of the range except it is negative. Therefore, finding the range unit vector gives the partials of the state
vectors

P._L_, ©)
or,, P
P__L_, ™
or P

These partials are multiplied be the state transition matrix of spacecraft states and the Earth rotation matrix of the
ground station states, respectively to get the final partials to be used by the simulation.

B. Doppler Partials
Second, the partials for the Doppler measurements need to be derived. This againis fairly simple. The base
equation for a Doppler measurement according to the geometrical elements of the observables is:

2fT{

Jr= T (1+d)p, - piy) +alt, -1,Xp, -po)- (e, ~1,XPis _po)]} ®)

where T is the step size, c is the speed of light, f7is the transmitter frequency, d and a are constants, and k is any
integer greater than zero.
From the previous section and equation 6, it is known that the derivative of the range is its unit vector and
because there is a linear relation between f; and p, the range partials are applied here. Thus, the partial vector for the
Doppler observable is:

af_f = '2‘&(1 + d)(ﬁk = Pra ) ®)
ox T

This can also be applied to the station locations where the partial vector for the range is the negative of its unit
vector:

T __ 2, 5 _ 10
== (1 +d)p, - i) (10)

s

The state transition matrix and the rotation matrix again come into play here, but this time it is not in the final
equation that they are applied. The range partial is multiplied by the state transition matrix before being placed into
the equation for the Doppler partials. This also applies to the rotation matrix and the range partials for the ground
stations. A noise term, g, is added at the end for more accurate analysis.
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C. DOR Partials

The final measurement type need is the DOR measurement. The DOR measurement is the time difference in
seconds it takes for a signal sent by a spacecraft to reach two different target ground stations. A visual of a DOR
measurement system is represented here to show how the algebraic representation of the time can be inferred
through its geometry which can be seen in Fig. 2.

Here B represents the baseline vector between the
two ground stations and Ap is the difference in one way
range. Using the geometry above an equation for the
delta one way range is derived as™:

To spacecraft

Ap=Bcos@ 1)

The right side of the equation can be represented by

vectors in the sense that: &p

Ap=Be§ (12) 8
« B N,

where § is the unit vector in the direction of the
spacecraft. In other words, the differenced range is the T i
projection of the baseline in the direction of the
spacecraft. In order for this to be true it must be Figure 2. VLBI geometry for observing distant
assumed that the ground station-to-spacecraft direction spacecraft.2
is approximately the same for both stations.

Physically the extra distance traveled can be represented by the time it takes to travel that extra distance
multiplied by the speed of the signal:

Ap=1,c (13)
This allows for a representation of the measurement in terms of physical parameters that can be differentiated:
= t{Bei)-t 2+ 25,4 2,
[ cLr r r (1 4)

where r=,/i x+y?+ zzi and is the distance between the Earth and the spacecraft. Now that there is a

representation for the time difference, it now must be differentiated to get the partials starting with the spacecraft
state variables. The first partial derived is with respect to x.

or 1 [B ( -1/2 -3/2
—E == xx2+y2+zz) —x(xBx+yB +szXx2+y2+zz) ]
x ¢ Y (15)
Rearranging this equation, the partial becomes:
6&____1_ B _x(xBx+yBy+zBZ)
ox re|l 7 r’ (16)
This same process can be repeated for the y and z partials to get:
8& _1 B - y(xBx +yB, +sz)
oy re| ? r? an
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- 2

fr_g~ 1 B _z(xBx+yBy+sz)
oz re| ’ r

(18)

Now that the partials for the position have been found, it is necessary to look at the other components of the state
vector-the velocity components. Conveniently, there are no velocity components in the DOR measurement equation.
This means that all of the velocity partials are zero.

The partials now must be found for the ground stations. First the state vectors need to be defined and linked to
the DOR equation. The state vectors are represented by:

5y = (sl (19)

i=12

In the DOR equation the station state vectors are represented in the baseline vector term:

—

B =lz _ll (20)

Going back to the DOR equation, the chain rule can be used to generalize the partial. With respect to the x-
direction the DOR partial becomes:

or, Or, 0B,
ol, 0B, dl, @)

This allows the partial to be taken with respect to the baseline instead of directly with respect to the state
variables:

or, 1x

g

OB, cr 22)

x
Converting back to the state partials the equation becomes:

7y _1x08,
ol, crdl, (23)

x

This analysis matches for the other state variables as well. Looking at the baseline equation, the derivative of the
baseline is equal to one for station number two and negative one for station number one. So the state vector partials
become:

aTg _1x Brg 1x
a, cr o, cr
6z'g _ ]y aTg _ 1 y
a, cr o, cr
aTg_ 1z aTg_lz
a, cr al, cr (24)

These are all the DOR partials needed for the simulator’s analysis. For the analysis of the true satellite, a data
noise term, g, is added to simulate actual conditions for the signal propagation.
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III. Simulation

A. MONTE

MONTE was created at JPL as the next generation software system for spacecraft navigation. MONTE is
currently on its third release and will continued to be updated with new simulation tools and new features to
accommodate future missions. The intent of MONTE is to provide all trajectory related functions in support of all
navigation, from mission planning and design to maintaining and understanding the trajectory data of a current
mission.

MONTE contains many built in features to help with navigation studies. One of these features is the orbit
propagator. MONTE allows a user to create multiple body systems with initial conditions and then propagate the
orbit forward in time. The routine already includes common bodies for spacecraft to orbit including all of the planets
in this solar system and many of the moons around these planets. This simulation utilizes the two body system
involving the sun and the MER-B spacecraft en route to Mars. More advanced simulations can create systems
involving as many objects as deemed necessary by creating more complicated gravity fields and using more accurate
perturbations on the orbiting object. MONTE also allows for the placement and propagation of grounds station
locations on the surface of planets and other bodies. This means that with initial conditions, ground stations can be
placed on Earth and will spin with the true spin of the Earth. This is the case with the simulation in this study, with
two ground stations on the surface of the Earth at varying locations.

A feature of the orbit propagator is that it stores in a boa file the trajectory information. This allows a user to get
information at a specific time during an orbit such as the state variables of the spacecraft or the relative state
compared to a ground station or other point in space. This feature is what allows a user to calculate things such as
range and range rate or determine if a spacecraft is in view of a ground station. MONTE also allows the user to
acquire a state transition matrix for any point in time relative to another point. This is a very important feature
because the user can map a state back to an initial condition or map a state forward as a prediction.

B. Simulation Setup ;

The simulation itself uses many of the built-in features of MONTE. The main features that the simulation utilizes
are the orbit propagation tool, the trajectory query tool and the state transition matrix finder. The first step of the
simulation uses the orbit propagation tool to create a trajectory library for the spacecraft and the ground stations in
use. With the trajectory library created, it is now possible to query any point in the trajectory for information such as

relative position, velocity, elevation angles,
True orbit etc.

Two trajectories are propagated by the
simulation. One is the nominal orbit or the
AZ(t) actual trajectory of MER-B given the

specified initial conditions. The second orbit

is that of the true spacecraft. The initial

Ax (ti) conditions for the nominal orbit are changed

by a user defined amount representing the

Figure 3. Description of the true and nominal orbits. initial knowledge of the spacecraft position.

These new initial conditions are propagated

as the true spacecraft position. Both these orbits are illustrated in Fig. 3 with AX representing the spacecraft state.
The large difference at time t is the reason the filter must take into account initial uncertainties.

Now that the program has a trajectory path to track, the simulation can start its first run. The steps explained here
can be followed in Fig. 4. The time loop starts after initializing various filter variables and output lists. On each time
step the first task the simulation performs is to check the station schedule to determine if any measurements should
be taken. If it has been long enough since the last measurements, the program checks to see if the stations are in
view of the spacecraft. If both are in view and the schedule calls for a DOR measurement, the DOR measurement is
taken. If one station is in view and the schedule calls for a Doppler or range measurement, these measurements are
taken. The program then uses subroutines to obtain the actual measurements of the true and nominal spacecraft
trajectories as well as the partial derivatives of the DOR measurement with respect to the state vectors. These values
are then fed into an initial state Kalman filter which maps the current conditions back to an original state which is
updated every time the filter is called. The filter outputs an error and a covariance associated with the position error
of the spacecraft. At the end of the two month track, these values are plotted and saved.

Nominal orbit
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The user has many options when running this program. There are a large number of inputs defined in the
initialization file and the data collection routine. The user must define the initial conditions of the spacecraft orbit
using Cartesian position and velocity components as well as the reference frame and center body of the orbit. Also
the station locations need to be specified by there geodesic coordinates: latitude, longitude and altitude. In relation to
these initial conditions, the user must specify an uncertainty associated with the initial conditions to create the true
spacecraft state. In order for the propagator to create the spacecraft’s trajectory, the program needs the initial epoch

and the duration time of the simulation.

The tracking scheduler needs information about the time intervals between measurement passes, the time interval
between individual measurements and the length of tracking pass. Each individual tracking technique has its own set

Initialize filter variahles and
propagate initial states

Start filterloop

| Initialize efrorand covariance lists |

E

Start time loop

Ifnone
innew Check station schedule and if they
arein view
If one Ifbath in
in view View
Make range and Doppler Make DOR
measurements measwemerts

Run filter and gef errars |,
and covarinces

¥

Set filter variables for else
next time step

If ered of
| time loop

Re-propagate orbit
Plot errors and covariances | else wingpﬁltfr ?eta’m’ned

for filter loop initial conditions

Ifend of
| filter loop

Show plats

Figure 4. Flow chart for spacecraft navigation simulation.

noise on the position and velocity, the state equation must be looked at first.

where w is the white noise. Using the state relation:
P=AP+PA" +Q
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of these parameters. The
tracking techniques, Doppler,
range and DOR, can be toggled
on and off in the initiation file
giving the user a way to study
the effects of individual
measurement types on solution
accuracy. Each measurement
type has a data weight
associated with it, again
something that can be changed
to suit a specific simulation.
Errors on the state variables
of the spacecraft and the
stations have an effect on the
way the filter performs and
converges. The program is set
up to allow the user to toggle
the state variables on and off
such that they do not contribute
to any errors in state system.
This can be useful in
determining the sensitivity of
the filter to specific state
variables and allowing states
that are of no interest to be
toggled off. Each state is then
given an error to simulate
process noise. This is done for
the spacecraft by feeding the
program an acceleration error
which is then used to calculate
process noise on the position
and velocity states at each time
step. In order to find the process

3.1

(3.2)




and substituting, we get:

lipn i’uj' - I:O 1}|:P11 P12J+[p11 plzj”:o 0}4_[0 O:l

Pu Py 0 0fpy P Pn Pnjl O 0 ¢ (3.3)
where g is the user specified process noise on the acceleration and the p values need to be determined. By

multiplying the matrices the equation becomes:

l:}"u p12:|___,:l711 P12]+|:p11 Oj|+[0 O}
Pn Pn 0 0 Py O 0 ¢ (3.4)

This leads to a set of four differential equations:

Py = Py + Pr Pu=pxn (3.5)

D2 =Py Pn=q

Beginning with p,, = g, the differential equations can easily be solved to arrive at a solution for the white noise:

1 . 1 .,
—qt° —qt
Q(t)z[pn plz:lz :1; 2
Pa P —qt? gt
2
3.6)
Or in a 6x6 matrix for the actual spacecraft state variables:
r 3 ) ) -
3 q,At 0 0 > q At 0 0
0 %quf 0 0 —q,Af? 0
0 0 1%m3 0 0 l%mz 3.7
oan=|, 3 2
—q, A 0 0 q,At 0 0
0 —;—qut2 0 0 q,At 0
0 0 %qutZ 0 0 q,At
where:
At=t-t, 33)

where ti, is the time of the last measurement taken. The process noise on the station 1ocations is a ssigned as a
constant at the beginning of the simulation and is not affected by time. For this particular orbit, the process noise on
the acceleration is set to (3x10)? and the process noise on the stations is set at (1x10%).

C. Trade Study
For a comparison to the current system, there needs to be a standard case for comparison. The base case for this
study will be an in-place measurement system using two-way range, two-way Doppler, and DOR along a baseline
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between Goldstone and Canberra. The parameters for this base case include a number of things in the way of data
collection. The two-way Range measurements will be taken twice a day for four hours, one at each DSN station. The
tracks will have a data interval of 30 minutes and a data weight of 1 meter. Also the simulation will have a range
bias of a 100 meter a priori uncertainty. The two-way Doppler measurements will also be taken twice a day for four
hours, once at each DSN station. These measurements will have a data interval of 10 minutes and a data weight of
0.075 mm/s. The DOR measurements will be taken twice a week. Each track will be performed at the same DSN
stations with a data weight of 5 nanoseconds. The baseline case will be run until filter convergence with an initial
conditions error on the order of 10 km, and station location errors on the order of 1 ¢cm. Once the basic case is
performed, the study will move into the investigation of shorter baselines.

The second part of the study will involve two ground stations, Goldstone and a station whose location varies by
distance and direction relative to Goldstone. A number of distance cases will be looked at in three directions: due
East, due North, and forty-five degrees Northeast. In each direction, the study looks at baselines of 2000 km, 1000
km, 500 km, 100 km, 10 km, and 1 km. The lowest of these distances will enhance the possibility of putting an array
at a single facility. Longer baselines normally provide the best results for VLBI, so in these cases there needs to be
another measurement variable changed to improve or maintain current accuracy. This variable is the frequency of
measurements taken by the DSN stations. The shorter baseline cases will take measurements in two cases: once a
day and twice a day. That gives the shorter baseline cases up to 7 times more data points then the intercontinental
baseline. There will also be three data weights investigated for each geometry: 5 nanoseconds, 1 nanosecond and 0.1
nanoseconds. The other two measurement methods, two-way range and two-way Doppler, will maintain the same
parameters for taking measurements. This is to be expected because they only utilize one station at a time in all of
the cases including the base case. Also, using the North-East baseline direction cases, a one-to-one comparison will
be made with the basic case (same measurement parameters).

IV. Preliminary Results

The presented results are based on the previously described trade study with some noted changes. First, only one
data weight for DOR was looked at for the continental baseline as well as only one data sampling rate for DOR.
Also, the DOR only cases will be done later. Finally the preliminary results give an overall accuracy of each
tracking simulation while the final trade study will be broken into B-plane components. For the baseline case there
were two cases run: one with Doppler and range only and the other with Doppler, range and DOR measurement
types. As will be the standard for all cases, the results are plots of the error versus time. There are two curves on
these plots, one being the observed error and the other the covariance.

£ 0all2 p
4 49402 —H
- . Legerd
£ 3.1es02 -§
g ;‘ Wi~ S XY
§F 285es02 - _ )
. s SRITIR
b . covariance
T 190402
= . error
2 1.2ed2
82001 R \\
O.0e+00 4 : : ; ;
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Figure 5. Accuracies for a Goldstone-Canberra baseline using all measurement types.
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The baseline case, in Fig. 5 shows the accuracy of the current system using two DOR measurements per week.
The simulation covariance converged to roughly 30 km. The observed error by the intercontinental baseline
converged to approximately 20 km. These results are in a very good range and once converted to the B-plane should
compare favorably to the reported accuracy of the MER-B mission. The Doppler and range only case for the
intercontinental baseline, Fig. 6, loses accuracy when compared to the use of DOR measurements. As seen the
covariance converges to approximately 56 km while the error converges near 30 km. The loss in accuracy is to be
expected due to the added measurement type. The difference was expected to be more, but the case with DOR
measurements did appear to converge faster as well as to its more accurate result.
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Figure 6. Accuracies for a Goldstone-Canberra baseline using Doppler and Range only.

Figures 7-9 show the results of a 1000 km continental baseline for the three directions of the trade study. As can
be seen by these figures, the results are not as accurate as those from the baseline case but are still within a
reasonable range. Of particular note is the fact that the north and northeast baselines are approximately twice as
accurate as the east baseline. In fact the north and northeast baseline compare very favorable to the baseline case.
This shows that for a particular orbit, the baseline direction can have a significant effect on the accuracy of the orbit
determination.

11
American Institute of Aeronautics and Astronautics




508402 -
42402
%: e
= B3e+02 - Leagend
2
% b 1111
& &3
: 2 Basl2 aigma
@ covpriance
g 1.Tesl2 b
i
ﬁ =
/ error
8. Je+ (1t
00010 ) ) I W
26 -0CT-2003 GB HOV-2003 Q5. DEC.2003
O3 B440 0 ET U3 54400 ET U3.54400 EY
Time
Figure 7. Accuracies for a 1000 km-North baseline.
S0es2
43&-@»&3 o
% 380402 Legend
£% ]
g Q’QE*m o > —“—“——“—-—-—-,£_”§ s
>
4. S g”gma
o 2 1eel2 -
m covariance
@
W AedZ £
&
0.084+00 1 ' * . . :
06 OCT. 2003 05 NOV-2003 05.DEC-2003
03:54:400 ET 03:54:40.0 ET 9384400 BT
Tirres

Figure 8. Accuracies for a 1000km-Northeast baseline.
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Figure 9. Accuracies for a 1000 km-East baseline.

Figures X10 and X11 show the results of a 1 km and 500 km baseline to the east. These, along with the results of
the 1000 km baseline in Fig. 9, show how the navigational accuracy changes as a function of the baseline length.
These three plots show a distinct downward trend in accuracy as the baseline gets smaller. This relation is to be
expected due to the fact that large baselines provide a more consistent DOR time giving the observer a better
resolution of the pointing vector. The numbers range from an error of a covariance of around 83 km and an observed
error of approximately 60 km in the 1000 km baseline case to the a covariance and error near 100 km and 75 km,
respectively. The drop-off was expected to be larger making this small range very interesting. An interesting note is
that the 1 km baseline case, a case that puts both ground stations within a single complex, were all close to, if not
exactly the same, result. This can be interpreted to mean that the smaller baselines depend very little on the direction
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Figure 11.  Accuracies for a 1 km-East baseline.

V. Conclusions and Future Work

The preliminary results of this study show many of the tendencies of navigational accuracies in regards to
baseline variables. These results are valuable but a completed trade study will provide
much more information then can be found in these preliminary findings. The baseline cases tell us just how much
affect the DOR measurements are having on the accuracy of the filter. They prove that DOR measurements are
import pieces of data in resolving the orbit of a spacecraft. The continental baseline cases showed that decreasing the
baseline most assuredly decreases the accuracy of one’s measurements. This can be seen through the comparison of
the east baselines in Fig. 9-11. The continental baseline results also showed that for larger baselines, the accuracy of
the filter is also dependent on the baseline direction.

The future of this study lies in the completion of the trade study described in the simulation section of this paper.
The program needs to be modified to output results in B-plane coordinates so that a more thorough conclusion can
be reached. Once the trade study has been completed, the benefits of very short baselines can be assessed in their
application to antenna arrays. The simulation can be extended to include multiple baselines for better results. The
study will also be extended to look at other mission phases including take-off, orbit insertion and landing of
interplanetary spacecraft, to go along with this current study of the cruise/approach phase. Extending this simulation
will give insight into the navigational benefits of a large antenna array located in a single complex and will help
determine if the large arrays are viable beyond scientific data collection.
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