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Abstract
Controlled flight of a solar sail-propelled spacecraft (“sailcraft”) is a six-degree-of-
freedom dynamics problem. Current state-of-the-art tools that simulate and optimize the
trajectories flown by sailcraft do not treat the full kinetic (i.e. force- and torque-
“constrained) motion, instead treating a discrete history of commanded sail attitudes, and
either neglecting the sail attitude motion over an integration timestep, or treating the
attitude evolution kinematically with a spline or similar treatment. The present paper
discusses an aspect of developing a next-generation sailcraft trajectory design and
optimization tool at JPL, for NASA’s Solar Sail Spaceflight Simulation Software (S5).
The aspect discussed is an experimental approach to modeling full six-degree-of-freedom
kinetic motion of a solar sail in a trajectory propagator. Early results from implementing
this approach in a new trajectory propagation tool are given.

Introduction

Generally the solution for an optimal spacecraft trajectory requires that a time-history of
propulsive controls (some combination the magnitude and direction of the instantaneous
thrust vector, or of the velocity change vector AV) be computed. This is done using
three-degree-of-freedom dynamics that treat the translational motion under the influence
of forces acting on the spacecraft without any detailed treatment of how the spacecraft is
constrained dynamically in its ability to vary in attitude from one epoch to the next. This
is particularly true in state-of-the-art solar sail trajectory optimization tools, in which at
best an upper limit on the solar sail attitude rate is applied as a constraint on the solar sail
orientation with respect to the sun, which is the fundamental control on the solar pressure
thrust vector. The present paper treats the derivation of simple, but useful, six-degree-of-
freedom dynamical expressions for the translational and rotational motion of solar sails,
that enables solar sail trajectory optimization to be performed with a constraint upon to
the maximum allowable torque acting on a sailcraft.

One of the chief concerns at the outset of exploring this approach was the large difference
in the size of propagation time steps required for accurately computing the rotation of a
spacecraft, compared with that needed for computing a heliocentric spacecraft trajectory.
The approach derived here is found to work well in treating solar sail rotations with
attitude propagation time steps that are as large as Attrans, With no errors in attitude
accuracy. The approach also enables constraints to be applied to the torques, as opposed
to the rotational rates, affecting the solar sail, which is useful in relating the trajectory
optimization results to the actual sailcraft design, in that torques are relatable to the

' Group Supervisor, Navigation and Mission Design Section, Jet Propulsion Laboratory, California
Institute of Technology. 4800 Oak Grove Blvd., Pasadena, CA 91109. Senior Member, AIAA.,




physical system (e.g. vanes, articulated-mass systems, bias momentum wheels, thruster)
that are used to control the attitude of the sailcraft.

General Six-Degree-of-Freedom Equations of Motion, and Limitations of Direct
Approach

The six-degree-of-freedom state vector (that is, expressing both the translational and
rotational motion) for a solar sail is formulated in a thirteen-parameter vector (Eq. 1):
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Here, subscript cg connotes “center of gravity”’; and sc connotes “sailcraft.” In the state
vector, the sub-vectors Ecg] , cmg] and [z—vcg:r are all cartesian three-tuples consisting of
X, ¥, and z components. The attitude quaternion [E]SJ3 is defined using the convention:
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in which 9 is the total angle of rotation of the body frame relative to the inertial frame
about the body-frame unit vector (i, j, k).

The time six-degree-of-freedom equations of motion are found by taking the time
derivative of Eq. 1, and are (Eq. 2):
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in which the time derivatives [5&,]1 and [EZC ]B are the inertial-frame acceleration of the

body center of mass and the body-frame angular acceleration, and the equation variables
are defined as:

M, = vehicle mass (default value = 1, never < 0), scalar, kg

I = vehicle inertia tensor (default value = I3, 3, always full rank), 3x3, kg-
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[l\=lng ]= sum of non-gravitational forces acting at vehicle c.g. (default = 0'),
inertial frame, 3x3, kg-m/sec2

[‘\g/cg]’: gravitational acceleration, due to N gravitating bodies, possibly with a

non-spherically-distributed “primary” gravitating body, acting at
vehicle c.g. (states in X), (default = 0) inertial frame, 3x1, m/sec’

[¥c = attitude control torques acting on vehicle (default = O) body frame,
3x1, N-m

[¥e,,v ][ =  environment torques, such as gravity gradient torque, acting on vehicle
(default = ), inertial frame, 3x1, N-m

T= rotational transformation from body frame to inertial frame
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and the quaternion rate coefficient matrix is
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These equations of motion are general for a rotating or non-rotating rigid body influenced
by gravitational and non-gravitational effects. The only non-gravitational force treated
here is the solar radiation pressure force (F, ), which is computed with the standard

optical model"? as in Eq. 3:

]] [Fsrp]I sc/sun) x Asaﬂ( {al cos (a) + Cl2 cos(a)}n + {a3 Sm(a) COS(a)}t) (3)
in which:
Ise/sun = distance of the sailcraft from to the center of the sun (km)

P(rsc/sun) = solar radiation pressure as a functlon of sun/sailcraft distance (N/m )
Al = total light-reflecting area of the sail (m )

aj=1+ps
=Br(1-s)p+ (- p)(eBr—epBy) / (er + &)
a3=1-ps

p = sail material reflectivity (dimensionless, ranges from 0 to 1)
s = fraction of reflectivity that is specular (dimensionless, ranges from 0 to 1)
gr = thermal emissivity of sail front side (sunward) material (dimensionless)




&y = thermal emissivity of sail back side (anti-sunward) material (dimensionless)
Bs= fraction of sail front-side reflectance that is non-Lambertian (0 — 1)

Bb = fraction of sail back-side reflectance that is non-Lambertian (0 — 1)

1 = unit normal vector, perpendicular to the sailcraft reflecting area

I, = unit sun-direction vector, from center of the sun to the sailcraft

o = “cone angle” = acos(- 1 - T,)
ﬁ x (ﬁ i ox (@ x §)

o <@ < &)

Eqgs. 2 possess the desirable aspect that the coupled attitude motion and translational
motion have an explicit, linear dependency on the control torque [\rlc ]B acting on the

sailcraft. Early in this study, an attempt was made to leverage this mathematical feature
so that the control torque history (as opposed to a history of sail inertial attitudes, which
represents state-of-the-art practice - c.f. refs. 2, 3, 4, 5) would be computed to minimize
time-of-flight. However, two problems were encountered in designing an optimization
tool that models the full six-degree-of-freedom coupled rigid-body dynamics, and treats

[z' ] vs. time as the control. First, it was difficult to assign an initial guess for the time

history of torques, to start the optimization process; in other words, it is more
straightforward to envision and supply a physically-meaningful sequence of attitudes
(e.g. in terms of sail normal vector cone and clock angles) than a sequence of torques.
This problem is one of ease-of-use by a trajectory designer, and while it is not necessarily
insurmountable, it calls for a user interface design activity that could be at least as
challenging as the development of the optimization algorithms themselves.

t = unit transverse vector, =

Second, a numerical issue arises with the propagation in time of Egs. 2. It has been
experimentally determined that the translational equations of motion can be propagated
with acceptable accuracy for trajectory design problems involving heliocentric flight of
solar sails using an integration step size Atryans on the order of 86400 sidereal sec, or even
larger. For example, numerically integrating a hehocentrlc solar sail trajectory using
Sperling-Burdet elements (c.f. Bond and Allman®) using 7%/8"-order Runge-Kutta with a
1-day time step results in trajectory errors on the order of . However, for accurate
propagation of the rotational equations of motion, it is found — again, by experimentation
— that an integration time step Atg,: typically on the order of 1 second or smaller is
required to maintain a small attitude error (nominally < 0.1 deg error in one day). This
property in the equations of motion is referred to as stzﬁhess Propagating Eqgs. 2 with a
1-second time step would result in runtimes about four orders of magnitude slower than a
three-degree-of-freedom trajectory propagation tool. Moreover, the accuracy of the
resulting translational trajectory would be affected by an accumulation of truncation
eITors over many small time steps.

As aresult of these 1ssues, an approach was sought that would allow for propagation of
the solar sail trajectory with large time steps, while accurately modeling the rotational
motion of the sailcraft. An analytic expression for the solar sail rotation, subject of the
remainder of this paper, is key to this alternative approach to modeling this six- degree-of-
freedom, torque-constrained dynamical system.




Analytic Expression for Solar Sail Rotation under Constant Torque
Consider the rotational equations of motion, extracted from Eq. (2) and neglecting
environmental torques (Eq. 4):
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Let us assume that the solar sail has constant spin rate ®, = ©,o; that is, control torques
are to be applied only about the sailcraft body x and y axes. Moreover, let us assume
that the sailcraft is axisymmetric about the z axis, so that the sail inertial tensor is (Eq. 5):
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where:

I =moment of inertia of sail membrane and its structural supports (kg m?)

mp, = payload mass (kg), supported at end of a boom along the + sailcraft z axis
bpr, = payload boom length (m)

With the above assumptions, and dropping the [.]® notation, Eq. 4 becomes (Egs. 6):
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in which A = (I — mprbpr*)/(I + mprbpi ).

Next, the variation-of-parameters technique was used to find a solution for Egs. 6, given
the added assumption that the control torques tx and ty are constant. This results in
expressions for the body-frame rotation rates under constant x- and y-axis torques (Eqgs.
7):
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Note that the expressions in Eqs. 7 are finite and analytic for all finite values of o,
including ®, = 0. This is proven in a straightforward fashion by expanding the sin[Ac,(t-
to)] and cos[Aw,(t-tp)] terms into Taylor series.

Define the body-frame angular displacement variables A6y, Ay, AQ; as (Eq. 8):
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For the constant-x-and-y-torque case, we substitute Egs. (7) into Egs. (8) and solve. The
resulting body-frame angular displacements are (Eq. 9):
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As with Eqs. 7, the expressions in Egs. 9 are finite and analytic for all finite values of w,,
including @, =0. Eqgs. 7 and 9 are a complete analytical solution for the rotational
motion of an axisymmetric rigid-body solar sail affected by constant x- and y-axis
torques. Contrasted with a numerical integration (using order-1-sec time steps) of the
rotational equations in Eqgs. 2, these analytical expressions can be evaluated over
arbitrarily large time steps, and produce results that are not degraded by truncation
roundoff error. Thus, if a time history of x- and y-axis control torques is provided, along
with initial position, velocity, attitude and attitude rate information, the translational and
rotational motion of the sail can be propagated with “large” time steps Atrpans, by
evaluating Eqs. 7 and 9 in the translational equations of motion.

However, as discussed above, providing the time history of torques as an input is still
problematic. Hence a method was sought for targeting the x- and y-axis torques, given a
desired sailcraft attitude history (consistent with state-of-the-art sailcraft trajectory design
practice).

Attitude Targeting Algorithm for Determination of Torques

Now if we apply a constant torque over time increment dt, having body-frame x- and y-
components T and Ty, to a solar sail having a constant spin rate w, and initial body rates
®xo and wyo, the resulting body-frame angular displacement components are given by
Egs. 9 above, and the resulting body rates are given by Egs. 7 above. Define At as (t — to).
As AO,(t) is independent of 1y, Ty, 0xo and wyg, we separate the z-component out from
these equations, leaving expressions for AO4(to + At), ABy(to + At), w.(to + At) and wy(t
+ At) that are linear functions of w9, ®yo, Tx and T,. We can also rearrange these linear
expressions to solve for AB,(to + At), ABy(tp + At), mxo, and oy, as linear functions of
x(to + At), @y(ty + At), T, and Ty (Egs. 10):

AG,(t, + At) o, (t, + At)
A, (t, + At w,(t, +At
Y( ° ) =K4x4(I’ 2” sz’ At) Y( ° ) (10)
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in which the components of (4 x 4) matrix K are:

ki1 = {sin(Aw,At)}/(Aw,)

ki, = {cos(hw At) + 1}/ (Aw,) .
ki3 = {cos(Aw,At) — 2}/(1 Awy)
k4 = {sin(Aw,At) — At}/(I Ao,)
ka1 =-{cos(Aw,At) + 1}/(Aw,)
ka2 = {sin(Aw,At)}/ (Aw,)

ks3 = - {sin(AwAt) — At}/(I Awy)
ka4 = {cos(Aw,At) — 2} /(I Awy)
k3, = cos(Aw,At)

k3, = sin(Aw,At)




k33 = - {sin(Aw,At)}/(I Ay)

k34 = {cos(h@ At) - 1}/(I Awy)
k41 = -sin(Aw,At)

k4 = cos(Aw,At)

ka3 = -{cos(Aw,At) - 1}/(I Awy)
kg =-{sin(Aw,At)}/(I Lo,)

Given the desired body-frame angular displacements and the initial-time body rates
{AO(t + At), ABy(t + At), my, and @y}, We can solve for the final-time body rates and
the required constant x- and y- torques {mx(t + At), ,(t + At), T4, and 1, } needed to attain
the angular displacements. This is done as shown in (Eq. 11):

o, (t,+ At) AG, (t, + At)
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in which L is the pseudo-inverse of K, i.e. L = (K'K)'K".

Eqgs. 11 are the basis of a solar torque targeting algorithm (for an axisymmetric, rigid-
body, constant-spin-rate solar sail having a payload mass concentrated at the end of a
boom on the body z axis), which takes a commanded angular change (expressed in terms
of ABy, Ay, and returns the needed torques 1y, Ty (constant over the time interval At).

In order to implement torque targeting in a trajectory propagator, one must determine the
desired body-frame angular displacements ABy, A8, from time t, till time t. As noted
above, typically a solar sail control is provided in terms of a time sequence of cone angle,
clock angle pairs (a., ). Hence, an approach was needed to relate a desired change in
cone and clock angle (Aa., AB) to the body-frame angular displacements. See Fig. 1 for
an illustration of the difference between these angle changes.

An approach to relating (ABy, ABy) to (Aa, AB) is based on noting the relationship
between the sail normal vector in both the body and inertial reference frames at t, and
time t. That is, the inertial-frame sail normal vector at time t, ﬁI(t), is related to the
initial-time inertial-frame sail normal vector n(t,), by (Eq. 12):

ﬁ](t) = T3, {(AB) Tl,I(Aa) ﬁl(to) (12)

in which T, ((Ac) is a 3x3 orthogonal transformation matrix expressing the rotation Aa.
about the inertial x axis and T3, (AB) is for rotation AP about the inertial z axis.




Figure 1. Solar Sail Body-Frame Angular Displacements A0, AO,, and
Commanded Sail Cone and Clock Angle Changes Aa, AB

Now relating n,(t) to the body-frame initial-time normal vector is n(t,) requires taking
into account the orthogonal transformation from the body frame to the inertial frame at
time tp (Eq. 13):

i,(t) =T, ,(AB) T, (Aa) Ty(t,) i(t,) (13)

Next, we can relate the body-frame normal vector at time t, f(t), to fi(t,) by taking into
account the orthogonal transformation from the inertial frame to the body frame at time t

(Eq. 14):
n(t) = TIB(t) T3,I(Aﬂ) Tl,I(Aa)Té(tO) ﬁ(to) (14)

We can also relate n(t) to n(t,) by applying a sequence of body-frame angular
displacements about the x, then y (or y, then x) body axes, as in Eq. 15:

A(t) =T, 5(A6,) T,5(A6,) fi(t,) (15)

In Eq. 15, Ty, g and T, p are orthogonal transformations about the body-frame x and y
axes, respectively. Now the coefficients of n(t,) in Eq. 14 and Eq. 15 can be equated to
one another (Eq. 16):




T, =T, 5s(A0) T x(A6,) = TP(t) T, (AP) T, (Ac) Ty(t,) (16)
Finally, terms a;; from 3x3 orthogonal matrix T,y are solved for AGx and A8y, i.e.:

AG, =sin"'(~a,)
Af -—-tan'{&J (1
y

a3

Note that the right-hand-side of Eq. 16 contains body-to-inertial/inertial-to-body
transformation matrices at two times. This implies that, although we are not requiring the
attitude quaternion q or the body rate vector ® to be in the state vector, we must book-
keep the sailcraft inertial attitude as a function of time in the propagation software, in
order to allow evaluation of T (t)and Ti(t,). Also, solving Eq. 16 requires an iterative
technique, because the inertial-to-body transformation at time t is a function of the
attitude at time t, which is, in turn, a function of the torques that we are solving for in the
targeting equations.

This approach for finding A8, and A, given some commanded change in cone and clock
angle (Ao, AB), is used, in conjunction with the torque-targeting equations (Egs. 12), and
the constant-torque rotational equations of motion (Egs. 7 and 9), to model the inertial
rotation of the solar sail, under the effect of torques, in a trajectory propagator.

Implementing Torque-Targeted Attitude Modeling in a Trajectory Propagator

The approach discussed above, for targeting torques based on input cone and clock
angles, then modeling the rotational motion of a rigid-body sailcraft based on those
torques, was implemented in the sailcraft trajectory propagation routine being developed
for NASA’s Solar Sail Spaceflight Simulation Software (S5)%. The translational
equations of motion, which are evaluated multiple times in a Runge-Kutta numerical
integrator at each propagation time step, were modified accept as input a sailcraft attitude
that varied over each time step. In this initial implementation, only a non-spinning
sailcraft has been treated; the control torques are selected to bring first the sail X axis,
then the sail Y axis, from zero body rate, to a maximum body rate at mid-attitude-
maneuver, then back to zero body rate at the targeted new attitude. Stated differently,
there are four daily torque segments, with the X torque applied in the positive, then
negative, sense, and then the Y torque applied in the positive, then negative, sense.
Prescribing zero body rates at the time step boundaries was an arbitrary choice, but is a
simple method for keeping the body rates bounded over the trajectory leg.

A note on the magnitude of the torques: the torques are targeted to reach the final state
no earlier than the final time, so that there is no period during the time step (typically
86400 seconds) that the sailcraft is un-torqued and “coasting” in rotational motion. This
choice results in keeping the torque levels over each segment minimal (and hence,
hopefully, achievable by whatever attitude control method — e.g. vanes, differential
motion of center-of-mass to center of pressure, wheels or tip thrusters — is chosen for the
vehicle.




The “6DOF-modified” translational propagator was tested with the initial conditions and
optimal control discrete time history that had been generated by C. W. Yen of JPL using
the legacy SAIL solar sail trajectory optimizer, for the Geostorm solar sail mission’. See
Fig. 2 for a plot of three versions of the trajectory, displayed in the synodic Earth/Sun
frame, with axes centered at Earth. The sailcraft is assumed to have a total mass of 297
kg, with a 10,000 m? square sail reflective surface; gravity effects of the Earth, Moon,
Sun and Venus are all modeled. Sail attitude is constrained to have a cone angle not
greater than 45 degrees.

These trajectory versions were all created with the 6DOF-modified propagator, in three
different modes. The first trajectory, which terminates near the white triangle in the
figure, was computed with constant attitude over each 1-day time step. It arrives within
approximately 50,000 km RSS of the location predicted by SAIL. The second trajectory,
which terminates near the black triangle in the figure, was computed using a
continuously-varying attitude based on targeted torques. It arrives approximately
350,000 km from the location predicted by SAIL. The third trajectory, which is nearly
overlaid on the first trajectory and also terminates near the white triangle in the figure,
was computed with continuously-varying attitude based on targeted torques, but was
modified so that the sailcraft was 1 kg heavier (i.e. 298 kg). It arrives approximately
30,000 km from the location predicted by SAIL.

(]

Figure 2: 286-day Geostorm Sailcraft Transfer Trajectory from Earth-Sun L1
Point to Sub-L1 Equilibrium Point on Earth-Sun Line

The optimal control history from the SAIL software was provided as a time series of sail
cone and clock angles (see Fig. 3, left side, for the control history) with a typical time
step of 1 day. The 6DOF-modified propagator varied the attitude continuously over each
time step — the difference between the attitude that was propagated with targeted torques
in the integrator, and the commanded attitude (in terms of cone and clock angles) is
shown in Fig. 3, on the right side. The attitude is seen to generally match with very high




accuracy — however, it is also noted that the maximum difference in attitude is seen to be
a “spike” of about half a degree, around mid-trajectory (when the largest commanded
change in attitude for the trajectory occurs).

]

Figure 3: (left) Commanded Sailcraft Cone and Clock Angle History for Geostorm
Mission’; (right) difference between propagated Cone and Clock Angles (using

torque targeting technique) and Commanded Values

Finally, the “targeted torques™ approach to modeling the attitude yields outputs from the
trajectory propagator which can be of use in designing a sailcraft mission. In particular, a
preliminary control torque history profile can be generated (see Fig. 4 for the Geostorm
torque history produced in this fashion), as well as a prediction of the peak body rates
over each interval between commanded attitudes (see Fig. 5 for the peak body rate
history for Geostorm).

]

Figure 4: (left) Geostorm Sailcraft Torque History (assuming X, then Y axis torque
sequence) for entire L1-to-sub-L1 transfer, based on commanded cone and clock
angles; (right) Geostorm Torque History (Five Days centered at mid-trajectory
“spike” in torque)




Figure 5: (left) Geostorm Sailcraft Peak X and Y Body Rate History (assuming X,
then Y axis torque sequence) for entire L1-to-sub-L1 transfer, based on commanded
cone and clock angles; (right) “zoom” of one region of the peak body rates

The peak control torque level predlcted for the given control history and the given sail
configuration is around 7 x 10” N-m. This torque level could be satisfied, for example,
with a set of vanes with reflective area not smaller than 0.22 m?, at the end a 70.71 m
boom extending from the sail center (implied by a 100-m square sail side), assuming a
near-Earth local solar radiation pressure of about 4.5 x 10 N/m?.

Conclusions and Future Work

The results discussed in this paper are based on an initial implementation in a sailcraft
trajectory propagator of targeted-torque rotation modeling, to achieve a six-degree-of-
freedom simulation of sailcraft motion. Further testing of this 6DOF-modified
propagator is presently underway. Present plans are to test the propagator with a
different mission profile than Geostorm, perhaps an Earth-orbiting sailcraft trajectory, in
order to more fully evaluate the strengths and limitations of the approach. Of particular
interest is testing this formulation with a spinning sailcraft. Finally, the 6DOF-modified
trajectory propagator is being incorporated into a trajectory optimizer for NASA’s S5
project. This new trajectory optimizer will take advantage of the six-degree-of-freedom
formulation, in particular the analytic formulation, in order to torque constraints, in
addition to attitude and body rate constraints that are typical of the current state of the art
in sailcraft optimization.
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