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Abstract. Missions to Mars already under study call for
very long autonomous traverses (on the order of hundreds of
meters per sol) during which there will be limited contact
with Earth. The Onboard Autonomous Science Investigation
System (OASIS) is a technology for increasing science return
during rover traverses by prioritizing data onboard, and iden-
tifying and reacting to unanticipated science opportunities[1].
By prioritizing data for downlink onboard, it is expected that
the set of images selected for downlink by OASIS will have
a consistently higher scientific interest than any set of equal
number of images of the same traverse obtained using random
or periodic sampling. Thus, OASIS can be used to increase
the science returned from a long traverse.

OASIS prioritizes data and identifies science opportunities
by extracting information from image data and then using
this information to prioritize the data and identify potential
new science opportunities. Currently the information extracted
from the images is the location of the rocks in the image and
several properties of these rocks such as size, albedo, texture
and shape. In this paper we give an overview of the role of rock
detection in the OASIS system and describe the functionality
of the rock detector. We then present results on representative
images.

Introduction. Rovers offer scientists the ability to move
around a planetary surface and explore different areas of inter-
est. The farther the rover can travel, the greater the opportunity
exists for increased scientific discovery. Downlink bandwidth
available to a mission, however, does not typically increase
proportionally to the distance travelled. This means that with
a greater distance traveled per sol, there will be less data (fewer
bits) per meter of traverse returned to Earth. The OASIS sys-
tem is one mechanism for ensuring that the data with high
scientific value reaches scientists on the ground.

The OASIS system. OASIS consists of an information
extraction module, a data analysis and prioritization module
and a planning and scheduling module.

The information extraction module enables extraction of
features of interest from collected images of the surrounding
terrain. This module includes a perception component and a
feature analysis component. The perception component iden-
tifies objects present in the image. It receives images from the
rover cameras and outputs areas of the image corresponding
to different aspects of the scene such as the sky, the soil and
rocks. The output is used by a feature analysis module to
extract features for the identified objects or regions. The rock
finder is one aspect of the perception component. In addition
to extracting the features of the rocks, results from the rock
finder can be used to estimate rock distributions, create rock
maps and count rocks in a region.

The data analysis and prioritization module uses the in-
formation from the feature extraction module to assess the
scientific value of the planetary scene and to generate new sci-
ence objectives that will further contribute to this assessment.

This component consists of three separate prioritization algo-
rithms that analyze the collected data and prioritize the rocks.
The results from these three algorithms are then fed into a uni-
fied prioritization algorithm that provides a prioritized list of
images for downlink. A new set of observation goals is also
generated to gather further data on rocks that were ranked as
high priority.

The planning and scheduling module enables dynamic
modification of the current rover command sequence (or plan)
to accommodate new science requests from the data analysis
unit. This component uses a continuous planning approach to
iteratively adjust the plan as new goals and/or faults occur.

Rock Detection. The perception module of OASIS iden-
tifies objects present in the image and maps them to symbolic
objects, i.e., it interprets the image and describes, at a very
high level, its contents. In general, this task is extremely
complex and there is no methodology to perform this inter-
pretation for an arbitrary image. In every case, the success
of a program in interpreting an image depends on the con-
straints on the subject, sensor, and environment. Consider the
case of face detection where subject (e.g., human face), sen-
sor (e.g., camera) and environment (e.g., imaging conditions)
are well determined. The constraints reduce issues with var-
ied image resolution, face pose, illumination, expression, and
other parameters. Even with these restrictions, multiple sen-
sor modalities are often used to facilitate the recovery of some
critical features, e.g., color simplifies the identification of lips,
stereo range eases the determination of the nose, etc. These
considerations highlight some of the challenges encountered
in designing a robust algorithm for detecting rocks.

The task of interpreting a Mars scene is highly uncon-
strained. Although it is true that many Mars scenes consist
exclusively of sky, soil and rocks, it is also true that there is
no strong constraint on the environment, the sensor, or the
subject. With respect to the environment, the images may be
taken under any ambient illumination: rocks may have a long
shadow or exhibit no shadow at all. With respect to the cam-
eras, the images may be taken with any focal length covering
anything from a wide angle, which leads to poor rock resolv-
ability, to a very narrow angle, where a single rock might cover
a large portion of the image. Likewise, the resolution of the
images is not fixed: some images may have high resolutions
(e.g., pan-cam) while others may have low resolutions (e.g.,
haz-cams). Finally, with respect to the subject, rocks may
appear in any part of the image, have any size, albedo, shape,
texture; they may be completely contained within the image
or not, might be present in groups or isolated, might occlude
other rocks and might be (and probably are) covered by dust
that makes them appear more similar to a dirty sand patch than
to a rock. To these difficulties, we must add that, as OASIS is
being designed to run autonomously, it is imperative that the
parameters of the rock detector do not depend on the image, re-
gardless of the conditions under which this was acquired, i.e.,
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the system must not require any parameter tuning (a liability
of the previous rock detector used by Oasis[2]). Given these
observations, it is clear that the success rate of a rock detector
will vary widely, from complete success to complete failure,
depending on the particular environmental conditions, sensor
and subjects.

From the many sensor modalities expected to be available
in a rover, we have chosen to initially base the rock detector
on analysis of intensity of single greyscale images. Thermal
infrared, suitable for detection of large rocks due to their ther-
mal inertia, would restrict the algorithm to work on images
from the pan-cam, the only set with a filter wheel; this same
argument applies for the use of color. The use of stereo is
highly desirable for detection of large rocks but it is unsuitable
for detection of small rocks and pebbles; also, it could not be
applied to imagers that do not come in stereo pairs, as is the
case for the microscopic imager (MI). In contrast, rock de-
tection on single greyscale images applies directly to analysis
of low-res haz-cam, high-res nav-cams, any spectral band (or
combination) of the pan-cam and the MI camera.

The detection of small rocks is carried out by finding small
closed shapes in the image. The image is initially normalized,
filtered with an edge preserving smoother[3] and its edges
are enhanced using unmask sharpening. The edges of the
resulting image are detected using both a Sobel and a Canny
edge detectors [4]. For each result, we search for small closed
shapes (which presumably correspond to small homogeneous
regions, i.e., pebbles) using an edge-walker. The results from
both detectors are combined and output as a list of contours of
the found shapes.

The detection of large rocks is an extension of the detection
of small rocks. On high resolution images, the exact contours
of a large rocks might be very complex and the albedo of the
rock might not be homogeneous due to both variations in the
rock composition and accumulations of dust or sand. However,
all this detail is present because of the scale at which the rock
was imaged. If we reduce the resolution of the image in half,
the rock will lose its detail but it would still be recognizable as
arock. Thus, the strategy of the rock detector consists of build-
ing a pyramid of images with the original image as the base
of the pyramid [5]. At every level of the pyramid, each image
has half the width and height of the image immediately below
it, i.e., image resolution is reduced as we move toward high
levels of the pyramid while it is increased as we move down,
toward low levels of the pyramid. Thus, large rocks present in
the high resolution image (i.e., at the base of the pyramid) are
mapped into small rocks at high levels of the pyramid, where
they can be found using the small-rock detector.

The detection of large rocks uses the detection of small
rocks in images where the resolution has been reduced, some-
times substantially. To recover the contour of the large rock,
at high resolution, we proceed as follows. Starting with the
highest level of the pyramid (lowest resolution), we double the
size of each rock found and map it to the level of the pyramid
immediately below it. For each rock thus magnified, we can
have two situations. On one hand, the rock might have been
detected at both levels in which case we keep the contour de-

tected at the highest resolution level and dismiss the other. On
the other hand, the rock detected in the low resolution image
(high level of the pyramid) had not been detected in the high
resolution image (low level of the pyramid), in which case,
the low resolution rock needs to be added to the list of rocks
of the high resolution image; in this case, the low resolution
approximate contour is refitted to the high resolution image
using active contours (a.k.a. snakes), an energy-minimization
procedure whose function is to reshape an approximate con-
tour toward a real contour using an image as a guide [4]. This
procedure is done once at each level of the pyramid, starting
with its highest level. The final result is a set of full-resolution
contours of rocks of all sizes.

Figure 1: Mars yard scene and its 2-D map of detected rocks

Figure 2: Gusev crater scene and its 2-D map of detected rocks
(Public image PIA04997, NASA/JPL/Cornell)

Results: Figure | shows a sample image and the 2-D
map of the rocks found. There are several points worth not-
ing. First, this scene was processed automatically, with no
tuning of any type; normalization and filtering takes care of
photometric variations and the scale-based search accounts for
variations in rock size. Second, the program is looking for
homogeneous patches and thus it errs when there are shadows
attached to dark rocks or when there is too much sand covering
a light rock. These issues can be solved using texture analysis
but this restricts the solution to the analysis of high resolution
images. Third, the program does its search on the image, not
on a 3-D estimate of the world, and thus, it cannot handle oc-
clusions. This can be solved using stereo but this restricts the
solution to the analysis of scenes imaged using stereo rigs. In
spite of these limitations, the program is successful at finding
rocks in many scenes that exhibit a low-to-medium rock den-
sity and where the rocks can be easily distinguished from the
ground. In particular, the images from Spirit show that these
are characteristics of the scenes imaged at the Gusev crater
(e.g., Fig. 2).
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