VirtexII 3000 FPGA Dynamic Burn-In Test
For Military And Aerospace Applications

Sponsored By NASA Electronic Parts and Packaging Program (NEPP)

Ramin Roosta
Electronic Parts Engineering, JPL/CALTECH
Michael Sadigursky, CSUN
Tony Wang, Ixia Communications
Phil Tracton, CSUN
 tentang 4 Mbits each. Two 18V04 will be combined provide configuration data for the driver FPGA.

Free running 20-33 Mhz clock Oscillator

EEPROM 18V04

EEPROM 16V04

EEPROM 16V04

JTAG header

SelectMap interface

VirtexII (XQR2V3000)

VirtexII (XQR2V3000) (download Readback & test generation capture)

CCLK, RD_WRN

CS_N, BUSY, PROG_R

INIT, DONE

Config(7:0)

TX Data(7:0)

TX_EN

TX_CTRL(2:0)

RX Data(7:0)

RX_EN

SSRAM/SDRAM

External Buffer/Expansion

Test Bus(Control+Data)

Probe Header

All Possible IDs

JTAG will be used for:
1) Program the EEPROM
2) Debug the driver FPGA
3) Debug the Test FPGA

Xilinx Software and connector will provide means to do so.

EEPROM 18V04

Master/Slave Serial Mode

Host PC Running loader&debugger

Parallel EPP Bus

Test Vector Configuration Bit

Test Result Readback Bit

FPGA Burn-in Test Hardware & Circuitry Rev 2

About 4 Mbits each. Two 18V04 will be combined to provide configuration data for the driver FPGA.

JTAG will be used for:
1) Program the EEPROM
2) Debug the driver FPGA
3) Debug the Test FPGA

Xilinx Software and connector will provide means to do so.

EEPROM 18V04

Master/Slave Serial Mode

Host PC Running loader&debugger

Parallel EPP Bus

Test Vector Configuration Bit

Test Result Readback Bit

About 4 Mbits each. Two 18V04 will be combined to provide configuration data for the driver FPGA.

JTAG header

SelectMap interface

VirtexII (XQR2V3000)

VirtexII (XQR2V3000) (download Readback & test generation capture)

CCLK, RD_WRN

CS_N, BUSY, PROG_R

INIT, DONE

Config(7:0)

TX Data(7:0)

TX_EN

TX_CTRL(2:0)

RX Data(7:0)

RX_EN

SSRAM/SDRAM

External Buffer/Expansion

Test Bus(Control+Data)

Probe Header

All Possible IDs

JTAG will be used for:
1) Program the EEPROM
2) Debug the driver FPGA
3) Debug the Test FPGA

Xilinx Software and connector will provide means to do so.

EEPROM 18V04

Master/Slave Serial Mode

Host PC Running loader&debugger

Parallel EPP Bus

Test Vector Configuration Bit

Test Result Readback Bit

About 4 Mbits each. Two 18V04 will be combined to provide configuration data for the driver FPGA.

JTAG header

SelectMap interface

VirtexII (XQR2V3000)

VirtexII (XQR2V3000) (download Readback & test generation capture)

CCLK, RD_WRN

CS_N, BUSY, PROG_R

INIT, DONE

Config(7:0)

TX Data(7:0)

TX_EN

TX_CTRL(2:0)

RX Data(7:0)

RX_EN

SSRAM/SDRAM

External Buffer/Expansion

Test Bus(Control+Data)

Probe Header

All Possible IDs

JTAG will be used for:
1) Program the EEPROM
2) Debug the driver FPGA
3) Debug the Test FPGA

Xilinx Software and connector will provide means to do so.

EEPROM 18V04

Master/Slave Serial Mode

Host PC Running loader&debugger

Parallel EPP Bus

Test Vector Configuration Bit

Test Result Readback Bit

About 4 Mbits each. Two 18V04 will be combined to provide configuration data for the driver FPGA.

JTAG header

SelectMap interface

VirtexII (XQR2V3000)

VirtexII (XQR2V3000) (download Readback & test generation capture)

CCLK, RD_WRN

CS_N, BUSY, PROG_R

INIT, DONE

Config(7:0)

TX Data(7:0)

TX_EN

TX_CTRL(2:0)

RX Data(7:0)

RX_EN

SSRAM/SDRAM

External Buffer/Expansion

Test Bus(Control+Data)

Probe Header

All Possible IDs

JTAG will be used for:
1) Program the EEPROM
2) Debug the driver FPGA
3) Debug the Test FPGA

Xilinx Software and connector will provide means to do so.

EEPROM 18V04

Master/Slave Serial Mode

Host PC Running loader&debugger

Parallel EPP Bus

Test Vector Configuration Bit

Test Result Readback Bit

About 4 Mbits each. Two 18V04 will be combined to provide configuration data for the driver FPGA.

JTAG header

SelectMap interface

VirtexII (XQR2V3000)

VirtexII (XQR2V3000) (download Readback & test generation capture)

CCLK, RD_WRN

CS_N, BUSY, PROG_R

INIT, DONE

Config(7:0)

TX Data(7:0)

TX_EN

TX_CTRL(2:0)

RX Data(7:0)

RX_EN

SSRAM/SDRAM

External Buffer/Expansion

Test Bus(Control+Data)

Probe Header

All Possible IDs

JTAG will be used for:
1) Program the EEPROM
2) Debug the driver FPGA
3) Debug the Test FPGA

Xilinx Software and connector will provide means to do so.
1. 3 Million system gates.
2. 14,336 slices, 3,584 CLB (Configurable logic blocks).
3. 448 Kbits of Distributed RAM
4. 96 Multiplier blocks
5. 96 Block select RAMs (18K bits each with 1,728 Kbits total)
6. 12 DCM (Digital Control Management), 16 Global Clock Multiplexor Buffers
7. 720 Maximum IO pads
Driver FPGA Responsibilities

- Host PC/EPP Parallel Interface
- Test FPGA Download/Readback Interface
- Test Vectors Sending/Retrieving Interface
- Internal/External Test Vectors Interface
- Fault Detection Interface
- Three Cascaded XC18V04 EEPROM Used (4,194,304 bits each)
- JTAG/Parallel Program Chain
- Master/Slave Serial Mode
- Automatic FPGA Configuration after each Power Cycle
Test FPGA Download

- Slave Select Map (8 bits Parallel) Mode
- Non-Contiguous CCLK Strobe Download
- Support ReadBack
- 17 Pins Mictor/Cable for Download Control/Data pins (expandable to 38)
- LED Notification of download
Sample Test (Burn-In) FPGA Designs

- **Shifters:** It will utilize as many as possible the LUTs (as SRL16s) and FFs to do bit Shifting around the entire chip.
- **FIFOs:** It will utilize as many as possible all the block RAMS and LUTS (as distributed RAMs) to 'FIFO' in and out data around the entire chip 8 bit wide.
- **Calculators:** It will occupy the entire chip with multiple 8 bits CRC engines and will Calculate CRCs for any given streams of data provided by the driver FPGA thus to test the arithmetic units inside the test FPGAs in addition to the previous two major tests.
Examples of Test FPGA Resource Utilization 1

- **SHIFTER Design Summary:**
 - Number of Slices: 14,334 out of 14,336 or 99%
 - Number of Slices containing unrelated logic: 5,237 out of 14,334 or 36%
 - Number of Slice Flip Flops: 18,241 out of 28,672 or 63%
 - Total Number 4 input LUTs: 9,000 out of 28,672 or 31%
 - Number used as Shift registers: 9,000
 - Number of bonded IOBs: 28 out of 516 or 5%
 - IOB Flip Flops: 17
 - Number of GCLKs: 1 out of 16 or 6%
 - Total equivalent gate count for design: 722,067
 - Additional JTAG gate count for IOBs: 1,344
Examples of Test FPGA Resource Utilization 2

- FIFO Design Summary:
 - Number of Slice Flip Flops: 1,885 out of 28,672 or 6%
 - Number of 4 input LUTs: 7,320 out of 28,672 or 25%
 - Logic Distribution:
 - Number of occupied Slices: 8,035 out of 14,336 or 56%
 - Number of Slices containing only related logic: 8,035 out of 8,035 or 100%
 - Number of Slices containing unrelated logic: 0 out of 8,035 0%
 - Total Number 4 input LUTs: 15,694 out of 28,672 or 54%
 - Number used as logic: 7,320
 - Number used as a route-thru: 182
 - Number used as Shift registers: 8,192
 - Number of bonded IOBs: 31 out of 516 or 6%
 - IOB Flip Flops: 21
 - Number of Block RAMs: 96 out of 96 or 100%
 - Number of GCLKs: 1 out of 16 or 6%
 - Total equivalent gate count for design: 6,894,037
 - Additional JTAG gate count for IOBs: 1,488
Examples of Test FPGA Resource Utilization 3

- CALCULATOR Design Summary:
 - Number of Slice Flip Flops: 8,447 out of 28,672 or 29%
 - Number of 4 input LUTs: 19,681 out of 28,672 or 68%
 - Number of occupied Slices: 10,733 out of 14,336 or 74%
 - Number of Slices containing only related logic: 10,733 out of 10,733 or 100%
 - Number of Slices containing unrelated logic: 0 out of 10,733 or 0%
 - Total Number 4 input LUTs: 19,686 out of 28,672 or 68%
 - Number used as logic: 19,681
 - Number used as a route-thru: 5
 - Number of bonded IOBs: 31 out of 516 or 6%
 - IOB Flip Flops: 21
 - Number of GCLKs: 1 out of 16 or 6%
 - Total equivalent gate count for design: 195,211
 - Additional JTAG gate count for IOBs: 1,488
Highlights of Software Functions

- Graphical Interface operates under Windows2000
- Configure the test FPGA including download of the test program
- Setup the Driver FPGA’s test Vector, then, read test results and give start/stop command
- Collect and report the test result by displaying the total error count
- Only three registers (8 bit each) to deal with - Control, Status, and Data with each a unique address as 0x01, 0x02, 0x03
- Two cycles, Data Cycle followed by Address Cycle
WinIO:
Third party library used to communicate with hardware through Win 2000 or XP

Parallel:
Wrapper functions used to hide the details of talking to the hardware.

Driver:
Most important layer, holds all the specific details for communicating with the hardware; Downloading to the FPGA goes.

Log:
Layer that handles actually writing to the log file.

GUI:
New graphical interface that walks users through the steps of use.

Future Interface:
Unknown, can be anything requested (i.e., web based or scripting).

Command Line:
Old basic interface that requires the user to know what they are doing.

Change the bodies of the ReadByte and WriteByte functionality to change the type of hardware for communication.

Replace with library to another type of hardware.
Software Flow & Hierarchy (con’t)

- The interface layer is replaceable.
- The hardware layer and 3rd party access to hardware is replaceable.
- The log layer is not replaceable, but is POSIX compliant.
- The driver layer is where all the intelligence goes and is the core of the system.
The software was developed using Microsoft Window’s Visual Studio .NET.

The graphical components are in C++ and the non-graphical components are in C.

WinIO is a third party library that was chosen to gain direct hardware access under Windows 2000 and XP.

The command line version was developed first and replaced by the graphical version.
Hardware

- Printed Circuit Boards Design
Burn-In Board Features:

- High reliability BGA burn-in socket (Center)
- Sockets for two optional high reliability oscillators
- Seven 50 Ohm high density connectors with clamps (six for data and one for configuration)
- Test points headers
- Clock and configuration selection jumpers
- JTAG connector
- Special purpose feedback lines (to configuration board)
Driver PCB

PCB CROSSECTION
Interconnect Cable

Industry does not offer any transmission means (Cable) to satisfy specifications.

Cable assembly is based on Teflon astro-boa-flexR III designed for space applications. It offers:

- High frequency (rated up to 12 GHz) operation and high signal Integrity
- High temperature and controlled impedance
- Surpasses requirements of MIL-C-17

High density Micror connector

4 layer Interface Board
Connector Boards
Summary

- 2 PCB Boards for driver FPGA and test FPGA have been designed
- A special power supply designed for test system
- Graphical software control application has been written
- Hundreds of hours of testing have been performed at room temperature
- 200 hours of burn-in at 85 degree C performed
- Plan to perform at 125 degree C as well as SEU radiation test