Self-Organizing Control for Space-Based Sparse Antennas

Fred Y. Hadaegh, Vaharaz Jamnejad, Daniel P. Scharf, and Scott R. Ploen

Jet Propulsion Laboratory
California of Institute of Technology
Pasadena, CA 91109 USA
Hadaegh@jpl.nasa.gov

Abstract

An integrated control and electromagnetic/antenna formulation is presented for
evaluating the performance of a distributed antenna system as a function of
formation geometry, A distributed and self-organizing control law for the
control of multiple antennas in Low Earth Orbit (LEO) is presented. The control
system provides collaborative commanding and performance optimization to
configure and operate the distributed formation system. A large aperture antenna
is thereby realized by a collection of miniature sparse antennas in formation. A
case study consisting of a simulation of four antennas in Low Earth Orbit (LEO)

is presented to demonstrate the concept.
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1. Introduction

In recent years, the science community has been
actively considering the use of distributed spacecraft
for deep space and Earth science missions. One such
application is to use a large number of small
spacecraft in place of a large deployable antenna in
order to achieve very large sparse apertures for Earth
imaging (for example, at resolutions of =10 cm).
Another application is the use of multiple telescopes
flying in precision formation as an interferometer in
deep space for stellar imaging and planet detection. A
number of such missions have been proposed that
offer unprecedented performance capabilities beyond
the scope of any single large telescope [17,18].
Compared to their equivalent monolithic aperture
counterparts, formation flying sparse antennas offer
launch and deployment efficiency, and has the
advantage of avoiding the structural complexity and
pointing issues associated with large aperture,
lightweight, antenna dishes in space.

This paper presents an integrated control and
electromagnetic/antenna approach needed to realize,
for the first time, distributed formation flying
spacecraft antenna systems in Low Earth Orbit
(LEO). The paper focuses on the core guidance and
control  (G&C) algorithms needed to perform
parametric studies to access the impact of replacing a
large monolithic space-based antenna by a collection
of miniature spacecraft. This concept is shown in

Figure 1. The development of techniques/algerithms
to couple formation flying with 3-dimensional
electromagnetic field pattern generation is another
important objective of this paper. To this end,
formation dynamics and environmental disturbance
modeling is presented in Section 3. Formation
guidance and control design for both translation and
attitude are presented in Section 4 and 5. Section 6
provides analysis of a spatial array of antennas along
with simulations.  Section 7 presents a four-
spacecraft sparse aperture example for evaluation of
the distributed antenna system performance.

Figure 1. Can a few small antennas replace a larger
antenna in space?
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Figure 2, Two possible L/F architectures. Solid arrows indicate leader assignment,

2. Sparse Antenna Guidance and Control
Architecture

In general, the methodology for coordination and
control of spacecraft in a formation is strongly
correlated with the formation size and particular
application. In a completely centralized architecture,
a single master spacecraft commands all aspects of
the other slave spacecraft. At the other end of the
spectrum is a completely decentralized architecture in
which spacecraft interact locally with other nearby
spacecraft. In this latter case, formation behavior is
said to be “emergent,” and is similar to the schooling
of fish or the flocking of birds. The defining
characteristic of a decentralized architecture is that
individual spacecraft do not require knowledge of the
entire formation state for control,

Here we use the Leader/Follower (L/F) decentralized
control architecture [8] for controlling relative
spacecraft positions (attitude control is discussed
subsequently).  This architecture is robust and
scaleable (e.g., individual spacecraft failures do not
affect the overall formation stability and additional
spacecraft can be easily added using only local
control design'). In the L/F architecture, individual
spacecraft controllers are connected in a hierarchical
fashion. With the exception of the formation leader
discussed below, each spacecraft is assigned a leader
that the spacecraft “follows,” ie., a follower
spacecraft controls its position with respect to its
leader. The leader may in turn be following another
spacecraft. There is at least one spacecraft in the
formation that does not follow another spacecraft.
This spacecraft is referred to as the formation leader.
The motion of the formation leader controls the
motion of the entire formation. We initially consider
small to medium formations (i.e., 5 to 10 spacecraft).
In this case, a single-layer L/F architecture is
feasible. Hence, all spacecraft follow the same

' To add or remove a spacecraft from a centralized
formation control architecture, the entire formation
controller must be redesigned.

spacecraft, which is the designated formation leader.
For larger formations, single-layer L/F imposes
restrictive  inter-spacecraft communication and
sensing requirements. Figure 2 shows examples of a
general L/F architecture and a single-layer L/F
architecture.

Absclute  spacecraft attitudes are controlled
independently so that individual apertures are pointed
in the nadir direction.? A spacecraft’s nadir direction
is determined using real time inertial position
knowledge obtainable from GPS measurements to 10
m(ic) accuracy (we cannot use precision centimeter
level orbit determination as was used for
Topex/Poseidon since this position data is delayed by
up to a day) [9]. For the orbits considered, a 10 m
inertial positioning error leads to a maximum nadir
pointing error of Q1 arc-minutes. Therefore, inertial
positioning errors can be ignored for our purposes.’

The formation guidance has a hybrid architecture;
part centralized and part decentralized. The attitude
guidance is decentralized; each spacecraft points its
aperture in the nadir direction independently of the
other spacecraft. The translational guidance is
centralized, A path-planning algorithm on the
formation leader plans the relative trajectories of each
follower with respect to the formation leader. These
trajectories are then communicated to the followers.

For a collection of spacecraft (apertures) to function
cooperatively as a sparse antenna, the contro] system
must be capable of maintaining specified relative

? Another alternative to be evaluated is using L/F to
point all spacecraft in the formation leader’s nadir
direction.

? GPS-based technologies are being developed that
can sense inertial positions to the centimeter level in
real time, These technologies have the capability of
superceding carrier differential GPS-based
measurements in the future.



spacecraft positions to a fraction of the antenna
wavelength. As a result, scientific applications
require  precision  formation  flying (e,
centimeter/arc-minute-leve! relative position/attitude
control). Relative position requirements have been
previously studied for synthetic aperture applications:
In the VHF radio frequency band (ie., 1 to 10 m
wavelengths), relative spacecraft positions must be
controlled to approximately the 15 cm level
Similarly, for interferometric synthetic aperture radar
applications in the L band (15 to 30 ¢cm wavelengths),
relative spacecraft positions must be controlled to
approximately the 3 cm level [1]. These relative
positioning requirements are consistent with current
carrier differential phase GPS (CDGPS) sensors,
which can measure relative positions with 2 cm (lo)
of accuracy. Attitude requirements for radar and
radio frequency synthetic apertures are not as well
defined [2]; a spacecraft must only point to a fraction
of an aperture’s beam pattern width [3], which is
application dependent.

In this paper, we assume that all the spacecraft are
nadir-pointing (i.e., downrlooking) and that the
attitude control requirements are consistent with
attitude sensing via CDGPS (i.c., 5 to 10 arcminute
level)[10].

In summary, robust precision formation control and
guidance algorithms must be developed that (1)
maintain relative spacecraft positions and absolute
attitudes to 5 ¢m and 10 arc-minutes, respectively,
and that (2) reconfigure the formation using fuel-
optimal, collision free trajectories. Further, these
algorithms must perform over orbits with altitudes
ranging from 250 to 1000 km and non-zero
eccentricity.

3. Formation and Environmental Disturbance
Models

A sparse antenna formation may be in a circular 200
km or an eccentric 1000 km orbit. The ambient
formation dynamic environment varies widely over
this range of possible orbits. For example, the relative
spacecraft dynamics are time-invariant (to first order)
for a circular orbit, but are time-varying for an
eccentric orbit. Further, disturbances vary by orders
of magnitude depending upon orbit semi-major axis
and inclination. In the following section, the
equations of motion for an N spacecraft formation of
distributed antennas in LEO are presented followed
by models for environmental disturbances.

3.1 Distributed Antennas Models

Each antenna is modeled as a rigid body with three
translational and three rotational degrees-of-freedom.
Each spacecraft is subjected to a pure Keplerian (i.e.,
two-body) gravitational potential along with
environmental disturbances including perturbations
due to L oblateness effects, acrodynamic drag, solar
radiation pressure, and Sun/Moon gravitational
perturbations. We further assume that each spacecraft
has full control authority in both translation and
rotation along all axes. The orbital geometry of the
formation is shown in Figure 3. Here the translational
motion of spacecraft i relative to spacecraft j is
described with respect to a Keplerian reference orbit
where RO denotes the reference orbit trajectory, and
p; denotes the position of the i spacecraft relative
to the origin of the orbit reference frame.  The
linearized translational equations of motion of each
spacecraft i=1,2,...N valid for |ﬁi| << |RO| are
given by
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Here the magnitude of RO is denoted byR,,
{0, 0,,04} denotes the right-handed orthonormal
triad defining the orbit reference frame shown in
Figure 3 whereo, points nadir, o, is normal to he
plane of the reference orbit, ando,completes the
triad, 4 denotes the gravitational parameter of the
Earth, [ denotes the unit dyadic, the symbol ®
denotes the tensor product, &, denotes the
perturbation on the i" spacecraft due to central-body
oblateness effects, d, denotes the perturbation on
the i spacecraft due to the gravitational attraction of
the Sun and Moon, F, is the resultant aerodynamic
force at the center-of-mass of the i” spacecraft, F,
is the resultant solar radiation force acting at the
center-of-mass of the i spacecraft, and F, denotes
the control force applied to the center-of-mass of the
i" spacecraft. Note that all derivatives in the
equations of motion are inertial derivatives.

The rotational equations of motion of each antenna

i=1,2,...N are given by
1
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where ¢, denotes the unit quaternion describing the
absolute attitude of the i” spacecraft, T is the
attitude dependent kinematic Jacobian matrix, @,
denotes the absolute angular velocity of the 1'5
spacecraft, [(,] denotes the skew-symmetric cross
product operator J, denotes the central inertia
dyadic of the i spacecraft, 7, denotes the resultant
aerodynamic torque acting at the center-of-mass of
the i spacecraft, T, , denotes the resultant solar
radiation torque acting at the center-of-mass of the
i spacecraft, and T, denotes the applied control

torques at the center—of mass of the i spacecraft,
S| rafl i
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Figure 3. Orbital Geometry

3.2 Environmental Disturbance Models

In this section, the explicit form of the disturbance
models appearing in the equations of motion are
presented. First, the perturbation due to Earth
oblateness effects on the i spacecraft is given by

- 3 Ja
A, =~ #ZR" (ce r+C24 3) &)}

where ¢, =1-5(¢é *n,) , c, =2(¢ *n,), and the
symbol @ denotes the standard dot product. Also J,
denotes the second zonal harmonic of the Earth, ais
the mean radius of the Earth, ¢, denotes a unit vector
along the absolute position vector, R, of spacecraft

, R, denotes the magnitude of R and n, denotes
the polar axis of the Earth. Note that the perturbatlon
due to oblateness has components in beth the radial
and polar directions.

The perturbations on the i" spacecraft due to third-
body (e.g., Sun, Moon) gravitational interactions is
given by

N .
F ._R. f-' .
J=1 f2; N

where [ . is the gravitational parameter of the jth
perturbing” body, N, denotes the number of
perturbing bodies and the vectors r1 and r2 are as
shown in Figure 4.
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Figure 4. Geometry of Third-body Perturbations

The aerodynamic disturbances acting on a single
spacecraft are modeled by approximating each
spacecraft as a convex collection of flat faces. For
simplicity we assume that all spacecraft are identical
and consist of the same number of faces, denoted
N e The resultant aerodynamic for(r:he and torque
about the center of mass of the i spacecraft,
denoted F’; ~and T, respectively, are given by

- Nface .
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where

ﬁaij =—_Cd i ij rel y("rj re[ lj)r}ﬁ‘el,fj (9)

and
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Here F i denotes the rcsultant aerodynamlc force
acting on the j* face of the i spacecraft T is the
center-of-mass to center-of-pressure offset of the ;*

face of the " spacecraft, 1, denotes a face
partrcrpatmn factor, C, denotes the drag coefficient
of the ;* face of spacecraft i, A denotes the area
of the ;" face of the i" spacccraft P is the
altitude-dependent atmosPherlc densrty,hn denotes
the unit normal of the j= face of the H spacecra&
V., is the velocity of the j face of the lh
spacecraft relative to_the atmosphere, V| 4 denotes
a unit vector along Ve, 'L K is the absolute velocity

of the center-of-mass of the i spacecraft, 0}



denotes the absolute angular velocity of  spacecraft
i, R, 1s the absolute pos1t1on of the center-of-mass of
the i* spacecraft, and a)p denotes the absolute
angular velocity of the Earth. Note that we have
assumed the atmosphere rotates with the same
angular velocity as the Earth.

The disturbance due to solar radiation pressure acting
on a single spacecraft is also computed by
approximating each spacecraft as a collection of flat
faces. The resultant force and torque about the center
of mass of the " spacecraft due to solar radiation
pressure, denoted F; and T, respectively, are given
by

. face
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Here S denotes a unit vector from the center-of-
mass of the j" face of the i spacecraﬁ to the Sun,
P denotes the mean momentum flux at IAU C,; 18
the coefficwnt of specular reflection of the i face of
the " spacecraft, and ¢, 15 the coefficient of
diffuse reflection of face j of the i " spacecraft.

4, Formation Guidance Design

The formation guidance algorithm has two functions:
(1) planning relative positions of the follower
spacecraft so that the desired electromagnetic beam
pattern is attained, and (2) planning fuel-optimal,
collision-free reconfiguration trajectories to form new
beam patterns or balance fuel consumption. The first
guidance function requires optimal aperture
positioning (a genetic-algorithm based approach 1s
presently under study), and a prescribed set of
relative spacecraft positions is used for this purpose.

The second guidance function has been designed and
implemented using two different algorithms, The first
algorithm is applicable to formations in circular
orbits, and is based on linearized Lambert targeting
(LLT) using the Hill-Clohessy-Wiltshire (HCW)
equations discussed below. The collision avoidance
algorithm for LLT guidance is heuristic-based, and is
not guaranteed to converge to collision-free

trajectories nor is it optimal. However, the LLT
algorithm is a quick and efficient method for
calculating  reconfigurations. The  second
reconfiguration  guidance  algorithm s an
implementation of the linear programming (LP)
algorithm of [15]. The LP algorithm is applicable to
formations in eccentric orbits. However, it is optimal
only when the fleet leader is fixed on a reference
orbit. The LP algorithm first discretizes the control
input and then minimizes the absolute value of the
acceleration for a spacecraft reconfiguration. For our
purposes, the main benefit of the LP algorithm is the
ability to enforce state constraints for collision
avoidance.

5. Formation Control Design
5.1. Translational Control
Since our primary goal is to develop a general
formation controller to support sparse aperture beam
pattern analysis/optimization over a wide range of
formation orbits, a classical design method was
chosen for developing the individua! spacecraft
translational control-laws. Classical design methods
have straightforward robustness criteria and have
proven to perform adequately even when design
assumptions are violated. The control design-model
is based on the HCW equations, which describe the
relative (linearized) translational dynamics between a
leader and follower spacecraft when they are near a
circular orbit. The reference frame and variables used
in the HCW equations are shown in Figure 5. The
HCW frame has an origin O traveling on a circular
reference orbit and coordinate axes
X,,¥,.and z, where ¥, is parallel to the circular orbit
velocity, z, is perpendicular to the orbital plane, and
%, completes the right-handed triad. The HCW frame
is also rotating with constant angular velocity
@, = @yZ, - The position of the leader in the HCW
frame is given by p; and the position of the follower
by p,. The position of the leader with respect to the
follower resolved in the HCW frame, is given by
=[x y zI'. When both |,51| and |;§| are
small compared to the orbital radius, the equations of
motion are

55—360536—20)0_]'2 =a, (14)
j5-+-2a)05c=ay (15)
P+wliz=a, (16)

where a,, a, and a. are inertial accelerations due to all
control forces and disturbances resolved in the HCW
frame.
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Figure 5. HCW Frame and Variables used in the HCW Equations

In the HCW equations, the x and y motion is coupled,
and the z meotion is decoupled. As a result, the z
motion controller can be designed using standard
single-input, single output (SISO) classical design
methods. However, the combined x and y motion
constitutes a multiple-input, multiple-output (MIMO)
system, and so classical MIMO design methods must
be used.

There are a variety of classical MIMO design
techniques, but generally they first attempt to make a
MIMO system look approximately SISO, and then
apply SISO design methods [12,13]. We adopt the
sequential loop closure MIMO technique, illustrated
in Figure 6. This technique generates a diagonal
MIMO controller in the frequency domain of the
form

K(s) = Kl(s) 0 (7
0 K2 (s)

by only considering unidirectional (i.e., hierarchical)
MIMO coupling during the initial control design.

1) Given a square piant:

[x@]:[qxs) Go) u(s>]
56| (66 Go]uw

2) Design K, ignoring
MIMO coupling

U,
—» K, —» G, +Y‘

3) Design K,
with K, loop
closed
Gz
Yz
| K G
U,

4) Check stability with Kz and K, loops closed, and if not stable iterate

After an initial controller has been obtained, the
control design is iterated with full bi-directional
coupling to guarantee stability.

A representative single loop control design (e.g., the
z motion control loop or the Ky(s)G(s) loop in
Figure 6) is shown in Figures 7 and 8, Figure 7 is the
Bode diagram for the representative loop transfer
function. The @,resonance at 2x10™ Hz which is
proportional to the reciprocal of the reference orbit
period is apparent. Note that since the control is
implemented at 1 Hz, the Bode plot only extends to
0.5 Hz.

Figure 8 shows the loop frequency response (solid
line) in the L-plane (i.c., magnitude in dB versus
phase in degrees). The frequency response must
remain outside the dark dashed box for the standard
stability margins of 6 dB and 30 degrees. The light
dashed lines indicate the conditional stability
boundaries (i.e., if the frequency response remains
below and to the right of the green lines, then control

Nl
Ki [ G

meg

Figure 6. Sequential Loop Closure Design Technique
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Figure 7. Bode Diagram of Representative Controller
Loop Transfer Function

saturation will not necessarily destabilize the
controller). To obtain increased control performance,
the translational controller was designed to be
conditionally stable.
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Figure 8. L-Plane Diagram of Representative
Controller Loop Transfer Function

The MIMOQO translational control design was
evaluated using the high-fidelity, nonlinear “truth”
model developed in Section 3. A follower spacecraft
was given a | m step command with respect to the
leader. The resulting error time histories are shown in
Figure 9. The leader is in a 0.05 eccentric orbit,
which violates the circular assumption of the HCW
equations used for controller design. Note, however,
that the closed-loop system is still stable. There is
significant y-motion overshoot due mainly to the
sequential loop closure design technique (bi-lateral

coupling was ignored in the design of the y loop). In
practice, the controller will not see a 1 m step, and so
the absolute  tracking  performance  during
reconfigurations (when performance requirements are
relaxed) will be considerably less. Future work would
also involve designing a pre-compensator to reduce
overshoot.

Py . PR N [
[ N
yn-als Emcs
4h—anis Bow

Tracking Enox i)
o - -
1
¥
n

3

Tera {8)

Figure 9. Follower Relative Position Error

The translational controller was also evaluated for its
precision performance. Assuming 2 c¢m (lo) sensor
noise and a 0.05 eccentricity reference orbit, the
position of a follower with respect to the leader was
maintained constant to within 3 cm (lg) in each axis.
All the contro! loops are type 1 or better, so that
quasi-static disturbances such as aerodynamic drag
can be rejected. Finally, the bandwidth of each loop
is approximately 0.08 Hz.

The translational control design meets the 5 cm
precision requirement discussed earlier, and it is
robust to the entire range of formation orbits being
considered in this paper.

5.2 Attitude Control

The attitude control design model is based on Euler’s
equations (i.e. the balance of angular momentum)
linearized about the Local-Vertical-Local-Horizontal
(LVLH) frame. The LVLH frame travels on a
circular orbit and rotates with the circular orbit just as
the HCW frame does. In particular, the LVLH frame
rotates with constant angular velocity @&, = -@,Y, ,
where w,is the same as in the HCW equations.
However, the LVLH frame is rotated with respect to
the HCW frame so that the z, coordinate axis points
in the nadir direction. See Figure 10.



Figure 10. Local-Vertical-Local-Horizontal Frame

The angular deviations in each axis are given by €, ,
€, and &, , respectively. An “L” subscript has been
included to indicate the LVLH frame as opposed to

the HCW frame. The resulting attitude dynamics are
then

) 2 ‘
L, U, =i mpe, +(1, — 1 =)0, =Ty (18)
L&, (I, L whey +Uy 1 =T g, =7, (19

1€, =1, (20)

where [, I, and [, are the principal moments of inertia
about the spacecraft center of mass, and
7.7 ,and 7_ denote the control and disturbance
torques resolved in the LVLH frame. Two implicit
assumptions in Equations (18)-(20) are that the
principal axes of the spacecraft coincide with the
body frame and that the body frame ceincides with
the LVLH frame when the attitude control error is
Z€ero.

Note that Equations (18) and (19) are coupled,
whereas (20} is decoupled. This structure is identical
to the structure of the translational control design
model given in Equations (14)-(16). Although, in this
case the X, and Z, motions are coupled. Since the
design process is essentially the same, we only report
the results of the attitude control design.

Figure 11 shows the angular deviations {errors) as a
function of time for an attitude test case. Again, the
full, nonlinear equations of motion have been used to
validate the controller designed on the simplified
dynamics (18) — (20). The spacecratt is originally
aligned with the HCW frame. It is then commanded
to slew to align with the LVLH frame. This
maneuver represents a “worst case” large-angle slew
that would be used to point the apertures after
deployment or a recovery from a fault condition.
Note that the controller is stable even though the
small angle assumption is violated.

The attitude controller loop transfer function shapes
are very similar to those of the relative translational
controller show in Figures 7 and 8 Further, the
attitude controller is also discretized at 1 Hz, and the
control bandwidths are approximately 0.08 Hz in
each axis. Assuming 6 arcminute (1g) sensor noise
and a 0.05 eccentricity reference orbit, the attitude
was maintained constant to within 8 arcmintues
(l6) in each axis. Therefore, the attitude controller
meets the 10 arcminute performance requirement
over the entire range of formation orbits considered.
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Figure 11. Attitude Controller Evaluation

6. Analysis of a Spatial Array of Aperture
Antennas

An array of small aperture antennas on multiple
spacecraft can be synthesized into a single antenna
whose  properties are determined by the
characteristics of each individual antenna and their
respective excitation phases and amplitudes. Such a
composite antenna has definite advantages in terms
of deployment flexibility. Specifically, as individual
spacecraft are launched separately, the deployment of
an individual antenna (spacecraft) consisting of a
small solid one-piece aperture, is much more reliable
and less subject to failure. Furthermore, the surface
tolerances of these individual small apertures can be
maintained with a high degree of accuracy.

This distributed antenna arrangement provides for the
independent active control of each sub-aperture in
terms of its phase and amplitude. Therefore, by
independent mechanical and ¢lectrical RF control of
each element, the composite antenna can be
reconfigured for different RF properties such as
beamwidth, and the beam can be scanned
electronically (e.g., in a phased array the direction of
maximum gain can be changed without changing the
orientation of the individual apertures). This



arrangement also provides flexibility in dividing the
array into two or more separate sub-arrays with
distinct individual beams and applications. The
distributed array provides graceful performance
degradation in case of a single or a few individual
aperture/spacecraft failures. The ability to add new
antennas/spacecraft as needed is another advantage of
such an arrangement.

6.1 Various geometrical arrangements of the
arrays

There are many possible arrangements of the
elements of an array, each requiring separate analysis
techniques. Although each element can be a different
type of antenna with different characteristics and
parameters, in most applications they are identical.
Furthermore, the antennas are generally assumed to
have the same physical and pattern orientation (i.e.,
all the beams of individual antennas are in the same
direction and have identical field polarization). We
have developed a suite of MATLAB programs that
can analyze general array cases, which include most
of the above arrangements as special cases.
Specifically, the general analysis of a planar array of
regularly spaced identical elements with identical
orientations has been developed in simulation using
both closed-form analytical solutions as well as
numerical integration. Individual elements can have
different power and phase. Further, the analysis of a
general three-dimensional array of identical elements,
each with different orientations and arbitrary general
spatial locations (to account for the tolerances in
position and orientation), has also been developed for
pattern and gain calculation using numerical
integration.

6.2 Array Formulation

The geometry of the array is shown Figure 12. Two
cases are considered. First a general array of identical
elements with arbitrary locations in space and
arbitrary orientations is formulated. The results are
then specialized for the case of a planar array of
elements with identical orientations. This resuits in a
substantial simplification, and for certain types of
elements, leads to a closed-form solution for the gain
of the array.

6.3 MATLAB Implementation

In the first implementation we employed the full
cosine pattern for element pattern representation.
Both analytical closed-form solutions as well as a
numerical integration method were utilized. The
input to the program includes the position of each
element in space and the orientation of the array. In
its present form, the program calculates the peak gain
of the array, and plots pattern cuts corresponding to

¢=0 deg. (x-z plane), 6=90 deg. (y-z plane), or any
other specified azimuth angle ¢. In addition, three-
dimensional plots and contour plots of the beam
pattern in u-v space, where wu=sin(Gcos(¢), v=
u=sin(@sin(¢), and 6 denotes the co-latitude are
provided. In the final implementation of the
program, a general three-dimensional array of
elements with arbitrary locations and orientations
were considered. Full cosine, as well as half-cosine
and lambda element pattern representations, were
included. The input to the program includes the
location of each element in space as well as the
Eulerian angles describing its orientation. The
program calculates the peak gain of array, and plots
pattern cuts corresponding to any specified azimuth
angle ¢. In addition three-dimensional plots as well as
contour plots of the beam pattern in w-v space are
provided. As an example, the beam contour plots in

u-v space of a two-element array (x =*14, where A
is the wavelength) with variations of element
positions in X, y, and z directions are shown in Figure
13.

7. G&C Simulation Architecture

An integrated guidance and control simulation
testbed was developed that allows direct visualization
of the coupling between orbital motion and the three-
dimensional (spatial) antenna array pattern. The
testbed was used to perform computer simulations to
study the dynamic behavior of the distributed antenna
formations, and assess the performance of the
separated spacecraft antenna system. The G&C
algorithms described above have been integrated with
the electromagnetic/antenna field computations to
analyze a formation of N distributed antennas in
LEQO. The geometric and mass properties of the
spacecraft can be varied. The simulation architecture
has blocks for formation estimation, guidance and
control. Different formation scenarios are addressed
by modifying the formation guidance blocks in each
of the spacecraft. An inertial vector propagator is
used to update the nadir direction and there are also
blocks for mode commanding and thrust allocation.
Currently,  inter-spacecraft  communication is
assumed ideal (i.e., no delays). See Figures 14 and
15.

8. Conclusion

This paper introduced modeling, and G&C
methodologies for a set of antennas flying in
formation in LEO. The -electromagnetic/antenna
performance of a distributed and self-organizing
formation was evaluated through a control system
that achieved collaborative commanding and
performance optimization to configure and operate



the distributed formation system. A case of four
antennas in Low Earth Orbit (LEQ) was presented
and it was shown that proper configuration and
orbital positioning of antennas could lead to
unprecedented  antenna  system  performance
capability.

The simultancous control and coordination of
individual spacecraft is a very complicated task.
Specifically, maintaining precision position and
attitude tolerances while coordinating RF excitations
for various elements in a spatially separated
environment is a non-trivial task. These areas must
be studied in greater detail to provide feasible
implementation techniques.
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Figure 12. Sparse antenna geometry
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Figure 13, Beam Contour Variations

Figure 14. Simulation testbed GUI
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Figure 15, Formation G&C architecture
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