SMC-IT
Cost Risk Tutorial

Sizing the System

Presented by:
Jairus Hihn
JPL Software Quality Improvement Project

International Conference on
Space Mission Challenges for Information Technology
July 13, 2003

. |F Requirements
5| | Architectural Design
&1 |F Mission/Project Sched.
|| Implementation Appr.
8| |EMission/Project WBS Sator i Al JPL
o - ather & Analyz
z||k SW Implementation Technical and
and Design Approach — Programmatic <
Requirements
2|t Applicable Processe
£ & procedures ¢
© = I "
=k Design principles
c | |} Std WBS
Software 3 [FAsn e OWBReqs] | | Deine Work Elementy

Estimation e

> -Estimate Effort
-Schedule Effort

s te ps -Calculilte Cost :

Estimate Seftware A
Size

v

Model-based Estimaté

v

etermine the Impac
of Risk

v

» Validation and
Reconciliation

v

Review & Approve
Estimates

v

[Track & Report
Estimates

A 4

[Cost Metrics|
Archive

7/13/2003 Cost Risk Tutorial JMH-2

* The purpose of this step is to estimate the size of the
software project

— Formal cost estimation techniques require software size as an
input [Parametric Estimation Handbook, 1999 and NASA Cost
Estimation Handbook, 2002]

— Can be used to generate an engineering estimate as shown in
handbook

* Size can be estimated in various ways
— Source Lines of Code (SLOC) or Function Points
— Interfaces, objects, monitors & responses, widgets

» Size is one of the most difficult and challenging inputs to
obtain

7/13/2003 Cost Risk Tutorial JMH-3

%% Source Lines of Code (S LOC) NAS,
“=H" Physical vs. Logical lines of Code

 Typically either physical lines or logical executable
lines are used when counting SLOC

« Comments and blanks should never be included in
any lines of code count

* The physical SLOC metric is very simple to count
because each line is terminated by the enter key or a
hard line break

* Logical executable statements may encompass
several physical lines and typically include
executable statements, declarations, and compiler
directives

— Preferred input to cost models.

7/13/2003 Cost Risk Tutorial JMH-4

Size Metrics
PhyS|caI to Logical Conversion

For example, in C this requires counting semicolons and sets of
open-close braces

Most commercial cost models require logical executable lines of
code as input rather than the physical lines of code, as it is
considered to be more accurate and changes less between
languages

In some programming languages, physical lines and logical
statements are nearly the same, but in others, significant
differences in size estimates can result

Language | ’ | To Derive Logical SLOC
Assembly and Fortran ~ Assume Physical SLOC = Logical SLOC
Third-Generation Languages Reduce Physical SLOC by 25%

(C, Cobol, Pascal, Ada 83)

Fourth-Generation Languages Reduce Physical SLOC by 40%
(e.g., SQL, Perl, Oracle)

Object-oriented Languages ; Reduce Physical SLOC by 30%
(e.g., Ada 95, C++, Java, Python)

C&DH SW Historical Mission New Mission
Module Actuals New |Modified |Reused
CMD 3292 4000

TLM 1406 400 1000
DM 1845 1000 1000

CMD IF 1373 1373

CMD/TLM BD 1442 1000

TLM IF 656 656
App 419 500

MM 2221 2300

TS 1864 1100 900

Time 97 97
™ 649 649
FS 59 59
SCU RM 387 400

Time Sync 344 400

7/13/2003

Cost Risk Tutorial

Size Estimation Example No. 1

JMH-6

Size Estimation Example No. 2

Function / LOC % %o
SubFunction New Size Ref Modified Size REF Re-Used Size REF
L ML H L ML H L ML H
Traj Optimization
Common Structure| 400 | 800 | 1000 - 35% 60% 80% | 4102 E
Traj Propagation 5% 20% 30% | 1147 D |]10% 25% 35% | 1147 D

" 5% 15% 20% | 7436 C [10% 20% 25% | 7436 | C
" 10% | 20% | 25% [4528 | A
" 10% | 20% | 25% B

Traj Partials 5% 10% 15% | 3682 E [10% 25% 40% | 3682 E
! 5% 10% 20% | 7436 C | 0% 3% 10% 7436 | C
" 10% | 25% | 35% | 4528 | A
) 10% | 25% | 35% | 13448 | B

SW Systems Engineer estimated percentage of functionality
being developed, modified or re-used

7/13/2003 Cost Risk Tutorial JMH-7

B

2% Written SLOC vs. Delivered SLOC

b

* Written SLOC vs delivered SLOC

— Implementation cost driven by written SLOC
— Maintenance cost driven by delivered SLOC

* Analogous size data typically provides delivered
SLOC

« Code comes in three different flavors
— New

— Inherited or reused
— Modified Inherited

* Each type of code requires different amounts of work
to make it part of the delivered system and none of it
IS free

7/13/2003 Cost Risk Tutorial JMH-8

APL

Equivalent Lines of Code

 Standard of practice is that written code measured by
what is called Equivalent (Effective) lines of code

— Equivalent SLOC takes into account the differences in effort
required to incorporate new vs. inherited code into a
delivered system

— While inherited code can save some effort, it typically saves
much less then people assume

— Equivalent lines of code takes into account the additional
effort required to modify reused/adapted code for inclusion
into the software product

 Example
— EqQSLOC = New + 0.25*Reused + 0.6*Modified_Inherited

7/13/2003 Cost Risk Tutorial JMH-9

Cost of Inherited Code

COCOMO 1II Code Cost of Reuse I_Selb Stud
Not Written for reuse Y Y

1 — /

09 AN T | / 1/ /

COCOMOII Code
Written for reuse

Cost Relative to New Code

0 0.1 0.2 0.3 04 0.5 06 0.7 08 09 1
Percent Modification of Inherited Code

7/13/2003 Cost Risk Tutorial JMH-10

e

.. Computing Equivalent Lines of

 First identify code heritage
— New code
— Inherited code with no modifications (Reused)
— Inherited code with modifications (Modified)

* Any major modifications to inherited code
should be treated as if it were new code

 Software development typically consists of
evolutionary software design with new code
development

711312003 Cost Risk Tutorial JMH-11

Code Methods

« Two recommended ways to estimate Equivalent
SLOC

« Method1

— (a) Treat inherited code with 50% or greater modifications
as new code.

— (b) Equivalent SLOC = Adapted SLOC*((.24*DM) + (.52*IM)
+ (.24*ReTest))

« Where

— DM is percent design modified
— IM is percent code modified
— ReTest is percent that must be completely retested

« Method2

— Use full algorithm as provided in COCOMO || tool
— Covered when discuss model based estimates

7/13/2003 Cost Risk Tutorial JMH-12

“~ .. Computing Equivalent Lines of
Code — Exam D le

* You are inheriting 10 KSLOC in two modules
— Module 1 is 5 KSLOC with no modifications
— Module 2 is 5 KSLOC requiring 30-40% modifications
— Module 3 is 5 KSLOC requiring 50=60% modifications

» Compute equivalent lines of code
— Module 1 is 5%(.24*0 + .52*0 + .24*1.0) = 1.25 KSLOC
— Module 2 is 5*(.24*.5 + .52*1.0 + .24*1.0) = 4.4 KSLOC
— Module 3 is 5 KSLOC
— Equivalent Size = 10.65 KSLOC

711372003 Cost Risk Tutorial JMH-13

“.— .. Computing Equivalent Lines of
724/ Code — Auto-generated Code

« Common sources of auto-generated code
— fault protection, simulation languages and Labview

« When using delivered code analogies, use the table
below to determine the appropriate delivered SLOC

* For example 10 KSLOC of auto-generated C code is
equivalent to writing 2.5 KLOC

To Derive Logical SLOC, Multiply
Number of Autocode Lines By:
Language Lowest | Most Likely | Highest
Second-Generation 1
Third-Generation 0.22 0.25 0.4
Fourth-Generation 0.04 0.06 0.13
Object-Oriented 0.09 0.17

7/13/2003 Cost Risk Tutorial JMH-14

What to Count

* Want to count EgSloc for software that gets
delivered as part of the system

* Includes
— System code
— Adaptation of standard multi-mission software
— Simulators
— Delivered regression test suites
— Test bed support software (input-output & analysis

 Excludes

— Non-delivered items
* Eg Non-delivered unit test scripts

7/13/2003 Cost Risk Tutorial JMH-15

Size Estimation Steps

* Decompose SW taking into account heritage,
functionality, and complexity

» Estimate Size Distribution parameters

— Derive Most Likely (ML) based on analogous functions from
completed software systems

— Adjust estimate for differences between current fn and
analogous fn

— Adjust estimate for heritage and auto-generated code
— Provide low and high size estimates based on best and
worst case scenarios
* Convert to logical lines if needed
— COCOMO and SEER use logical lines
— Handbook tables are based on logical lines

« Compute Total SLOC based on

— PERT Mean computation
* Mean = (Low + 4ML + High)/6
— Monte Carlo Simulation (preferred)

7/13/2003 Cost Risk Tutorial JMH-16

Size Estimation Example

Assumptions
New Reuseq % Modified BOE
Low | Likely High Low | High
Fn1 1 2 5 10 5% 15%
Fn2 2 3 4 5 0% 0%
Fn3 2 4 8
Fn4 8 10 20 2 50% | 60%

* Basis of Estimate (BOE) should include

— Analogies supporting Likely and reuse numbers
* e.g. Fn1 similar to Fn x on DS-1

— Conditions that drive Low and High estimates and
modification ranges

* e.g. Fn2 Low assumes that the driver sw that comes with
the actuator can be used as is, High assumes drivers
require extensive high level driver code

7/13/2003 Cost Risk Tutorial JMH-17

Size Estimation Example

Summary Tables

Eq SLOC |[New SLOC | Reuse |New SLOC |Eq SLOC

\Mean Mean Mean |[PERT Mean, Mode
Fnl “T 5.1 2.7 24 2.3 4.4
Fn2 4.2 3.0 1.2 3.0 4.2
Fn3 4.7 4.7 0 4.3 4.0
Fn4 14.7 12.7 2 11.3 12.0
Total 28.6 23 56 23 246

* New SLOC Means derived from Triangular Distribution

* Reuse Mean for FN1 derived from uniform distribution and
conversion factors of .24 for pure reuse, .76 for modifications, if
mods > .5 treated as new

 Eq SLOC just sums means

» Other columns provided for comparison

7/13/2003

Cost Risk Tutorial

JMH-18

Size Estimate Histogram

14%

Size Estimation Example

Distribut

lons

Mean Size = 28.6

100%
. 90% *
12% ¢ e .
L 80% ¢
4] -
10% 70% L
8% 60% ¢t
50% |
6%
40%
4% 30%
2o | 20% |
10%
0, | W——
0% 0%

> A ‘
OSSR v

7/13/2003

Cost Risk Tutorial

Size Estimate Cumulative Distibution

| H ! ek ! i : ! ’ }

24 26 26 27 28 29 30 31 32 33 34 35 36

JMH-19

Alternate Sizing Methods ¢

JPL

» Commonly used methods not covered in class but we
can provide assistance in using
— Paired Comparison Matrixes is a way to more rigorously capture
expert judgment

* Method based on rank ordering modules and providing
relative size ratios (eg Mod1 is 1.5 times bigger the Mod 2)

+ Can be easily implemented in Excel (e.g MONTE)
« SEER-SEM is an available commercial tool
— Function Points counts inputs, outputs, files

* Method based on counting input, outputs, data items, based
on a user-oriented high level software design

« IFPUG provides standards and training (http://www.ifpug.org)

» Approach can be adapted around counting inputs and
outputs from design documents or detailed requirements
documents

« Difficulty here is consistency
— Object Points counts classes and methods

7/13/2003 Cost Risk Tutorial JMH-20

Wrap Up

* The main output of this step is

— a matrix of size estimates by software module
— supporting assumptions as a BOE
— size distribution and summary statistics

New Reused % Modified BOE
Low Likely High Low High
Fn1 1 2 5 10 5% 15%
Fn2 2 3 4 5 0% 0%
Fn3 2 4 8
Fn4 8 10 20 2 50% 60%

|

Eq SLOC |[New SLOC| Reuse
Mean Mean Mean
Fn1 51 2.7 2.4
| — 2 4.2 3.0 1.2
Fn3 4.7 4.7 0
Fn4 147 12.7 2
Total 28.6 23 56

7/13/2003 Cost Risk Tutorial JMH-21

