Reconciliation, Closing the Deal and Following Through

Presented by:
Jairus Hihn
JPL Software Quality Improvement Project

International Conference on Space Mission Challenges for Information Technology
July 13, 2003
Software Estimation Steps

We do not cover this step in course.

Save History

When budget is too low “Do not look for a silver bullet” - DESCOPE

Follow Through

7/13/2003 Cost Risk Tutorial JMH-2
Validate & Reconcile The Estimate

- The purpose of this step is to validate and reconcile the estimates and improve their accuracy via comparing the risk adjusted engineering estimate with
 - Model estimates
 - Analogies (use several if available)
- This provides a more rigorous BOE and improves estimate credibility

Historical data from Projects X, Y, & Z all show our $5 estimate is what it should cost.

Software Manager

Project Manager

7/13/2003 Cost Risk Tutorial JMH-3
Example Model Output

Software Development Cost Cumulative Distribution Function

- For tasks with 10% level of reserves or less recommend a range of 50% to 70% probability
- For tasks with 20% or greater reserves recommend 40-65% for other Subsystems

7/13/2003 Cost Risk Tutorial JMH-4
Inconsistent Estimates Example

Software Development Cost Cumulative Distribution Function

- Recommended Budget with Reserves => 70%
- Recommended Minimum without Reserves => 50%
- At Primary Risk-Adjusted Estimate => 40% Probability, $1.1M

Cost ($K)

0 500 1000 Recommend between $1.2-1.4M 1500 2000

Cost Probability

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Consistent Estimates Example

Software Development Cost Cumulative Distribution Function

- Recommended Budget with Reserves => 70%
- Revised Risk-Adjusted Primary Estimate => 55% \(\$1.25M \)
- Recommended Minimum without Reserves => 50%

Cost ($K)

0 500 1000 1500 2000

Recommend between $1.2-1.4M
Reconciling the Risk Estimates

- When the engineering cost risk estimate is below 50%, iterate and rework estimates to determine cause of disparity
 - Check assumptions
 - Check technical margins
 - Check design drivers
 - Double check “I Forgot”s
 - Review schedule
- When the engineering cost risk estimate is greater then 70%, iterate and rework estimates to determine cause of disparity
 - Analyze risk drivers to verify risk assumptions
 - Review design & approach for changes to reduce risk
 - Check model assumptions
- If your primary estimate is below 50%, your primary estimate and model-based estimate should be examined for:
 - overly pessimistic or optimistic assumptions.
 - any forgotten items
- Iterate this step until your estimates are consistent or differences can be justified
Validation of Budget Example

Software Development Cost Cumulative Distribution Function

Cost Probability

- 100% Recommended Budget with Reserves
- 90%
- 80%
- 70% Risk-Adjusted Primary Estimate => 55%, $1.25M
- 60%
- 50% Recommended Minimum without Reserves => 50%
- 40%
- 30% At Current Budget =>
 - 35% Probability, $1.05M
- 20% Below 50%, need more resources
- 10%
- 0%

Cost ($K)

0 500 1000 1500 2000

Cost ($K)

Recommend between $1.2-1.4M

7/13/2003
Cost Risk Tutorial
JMH-8
• The purpose of this step is to
 – Review the software estimates
 – Obtain project and line management approval.
 – Check the accuracy of the software estimates over time
 – Maintain your history

• This is the step where things can fall apart

• Your lines of defense
 – Need defendable estimate
 – Descope
Review Objectives

- Confirm the WBS and the software architecture
- Verify the methods used for deriving the size, effort, schedule, and cost
- Ensure the BOE, assumptions and input data used to develop the estimates are correct
- Ensure that the estimates are reasonable and accurate, given the input data
Things to Look Out For

- Current proposal and planning process encourages/demands under-estimating in early stages of lifecycle
- Optimistic assumptions with respect to
 - Ability to reuse/inherit existing software
 - Availability of new technology and products
 - Stability and understanding of requirements
 - Newness
 - Anything you do for the first time will cost more than you expect
- Classic "I Forgot"s
 - Review preparation
 - Documentation
 - Anomaly and ECR's
 - Testing
 - Maintenance
 - Basic management and coordination activities
 - Mission Support Software Components
When In Doubt…

DESCOPE!!!
Track Your History

- Track the estimates to identify when, how much, and why the project may be overrunning or under-running the estimates.
 - Compare current estimates, and ultimately actual data, with past estimates and budgets to determine the variation of the estimates over time
 - This allows estimators to see how well they are estimating and how the software project is changing over time
- Track performance to calibrate your team
Estimate Data to Archive

- Project characteristics (project name, software organization, software type, application domain, platform, language, and mission class)
- Date of approved estimate
- Planned work breakdown structure (WBS)
- Estimated effort and cost of each work element of the WBS
- Estimation assumptions made (rules-of-thumb, development productivity, etc.)
- Estimation methods used
- Estimated size, effort and cost of software functions at the lowest level possible (subsystem, object, etc.)
- Estimated total size, effort and cost
- Planned dates of major milestones and reviews from the schedule
- Planned procurements
- Estimated cost of procurements
- Identified risks and their estimated likelihood & impact
Completion Data to Archive

- Project characteristics (project name, software organization, software type, application domain, platform, language, and mission class)
- Date of completion of work elements
- Actual work breakdown structure
- Actual development productivity
- Actual size of each software function at the lowest level possible (subsystem, object, etc.), in SLOC
- If available, actual effort and cost of software functions at the lowest level possible (subsystem, object, etc.)
- If available, actual effort and cost of each work element of the WBS
- Actual total size, effort and cost
- Actual dates of major milestones and reviews from the schedule
- Actual procurements
- Actual cost of procurements
- If available, actual risks and their impact
Software Cost Estimation & Planning Over the Life-Cycle

<table>
<thead>
<tr>
<th>NASA Phases</th>
<th>FORMULATION</th>
<th>APPROVAL</th>
<th>IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPL Life Cycle Phases</td>
<td>Pre-Phase A: Advanced Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major JPL Reviews</td>
<td>Concept Review</td>
<td>PMSR</td>
<td>PDR</td>
</tr>
</tbody>
</table>

Formulation

Approval
- Process Compliance Monitoring

Implementation
- Supplier Surveillance
- Product Quality Measurement
- Risk Identification & Mitigation
- Receivables/Deliverables
- Independent Verification & Validation
- Collection of Lessons Learned
- Cost Data Collect., Anal., Correct.
- Schedule Assessment, Correction
Last But Not Least

- Don’t let precision carry you away to accuracy
- Maintain good communication with customer(s) and cognizant engineers to minimize surprises and maximize chances of meeting customer needs

DESCOPE!!!