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THE ROLE OF INVARIANT MANIFOLDS IN LOW THRUST
TRAJECTORY DESIGN (PART III)

Martin W. Lo∗, Rodney L. Anderson†, Try Lam∗, and Greg Whiffen∗

This paper is the third in a series to explore the role of invariant manifolds
in the design of low thrust trajectories. In previous papers, we analyzed
an impulsive thrust resonant gravity assist flyby trajectory to capture into
Europa orbit using the invariant manifolds of unstable resonant periodic
orbits and libration orbits. The energy savings provided by the gravity
assist may be interpreted dynamically as the result of a finite number of
intersecting invariant manifolds. In this paper we demonstrate that the
same dynamics is at work for low thrust trajectories with resonant flybys
and low energy capture. However, in this case, the flybys and capture are
effected by continuous families of intersecting invariant manifolds.

INTRODUCTION

This paper is the third and last in a series to explore the role of invariant manifolds
in the design of low thrust trajectories. Our stated goals were to first, demonstrate that
invariant manifolds do indeed play a role in low thrust trajectories, and second, explain
how the dynamics of low thrust interplanetary trajectories interact with invariant manifolds
(see Lo and Anderson1). In the first paper (just cited), we compared low thrust trajectories
to invariant manifolds of nearby unstable orbits at a single energy level. This suggests
heuristically that we are on the right track, but since low thrust trajectories are constantly
changing their Jacobi energy while thrusting, one must study the entire family of invariant
manifolds in the energy range of the low thrust trajectory. In order to do this, we must first
understand the role of resonant orbits in planetary flybys, whether invariant manifolds play
a role or not. Thus, in the second paper (Anderson and Lo2), we analyzed the Planar Europa
Orbiter (PEO) trajectory and found that it indeed follows the stable and unstable manifolds
of the resonant orbits between impulsive maneuvers. In particular, where the manifolds
intersect in configuration space but not in phase space, those are the locations where a
maneuver is required for moving from one manifold to another. This suggests that a deeper
understanding of the geometry of the invariant manifolds of resonant orbits is critical to
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understanding planetary flybys, and we anticipate, for low thrust trajectories as well when
they are moving through resonant orbit regions. In this paper, we examine the relations
between a low thrust trajectory and the invariant manifolds of several families of resonant
orbits through the energy levels traversed by the low thrust trajectory. A more detailed
version of the results summarized in this paper may be found in Anderson’s dissertation3.

The use of low thrust in trajectory design can significantly increase the complexity of
the design process, since many of the standard astrodynamics tools are no longer applica-
ble without what are sometimes significant modifications. For modeling performed in the
two-body problem, it increases the difficulty of design in that the resulting trajectory no
longer follows conic sections. In the three-body problem, the energy or the Jacobi constant
changes as a result of the constant thrust. As a result of these difficulties, much of the de-
sign work for missions such as JIMO is performed using optimization tools which do not
necessarily incorporate full knowledge of the dynamics of the problem from a dynamical
systems perspective in the search for a desired trajectory. It has been observed however,
that the solutions developed using the Mystic optimization software appear to generally
follow the same types of paths as the invariant manifolds of unstable periodic orbits in
the three-body problem4. The question then arises as to whether a knowledge of the rela-
tionship of these optimized trajectories to the invariant manifolds of unstable orbits could
prove useful in the design of these trajectories. The long periods of time required to run the
optimization software could be significantly reduced if an initial guess could be developed
using the dynamics of the problem in the form of the invariant manifolds of the relevant
unstable orbits.

MODELS AND TOOLS

The Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CRTBP) was the primary model used
in this study. Many references exist with overviews from previous works2, 3 or more de-
tailed explanations5, 6 of this problem, but it is briefly described here. In this model, a
large body (the primary) and a smaller body (the secondary) are assumed to rotate about
their center of mass in circular orbits∗. The objective is to describe the motion of a third
infinitesimal mass, typically representing a spacecraft, placed in this system. In order to
simplify the analysis for this study, the infinitesimal mass was further restricted to the plane
of motion of the two primaries. The resulting problem is then commonly referred to as the
planar or coplanar CRTBP (PCRTBP). An integral of motion also exists in this model called
the Jacobi Constant, which varies when maneuvers are performed. Finally, there are five
equilibrium points in the problem about which periodic libration point orbits exist.

∗The value of µ used for the Jupiter-Europa system in this study was approximately µ = 2.526645×10−5,
where µ is defined as the dimensionless mass of the secondary and 1 − µ as the dimensionless mass of the
primary.
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Poincaré Maps

Once again, this tool has been described in earlier works2, 3, but as it is essential to
this analysis, it will be briefly reviewed here. In order to compute a Poincaré map for a
system in Rn, a ‘hypersurface’ Σ or surface of section in Rn−1 is placed tranverse to the
flow as shown in Figure 1. A trajectory intersecting the surface of section is integrated until

Σ

Figure 1 Sample Poincaré map for a three-dimensional system

it intersects the surface of section once again. The mapping is from the first intersection
to the next intersection and so on. The points of the mapping may then be plotted using a
number of different coordinates. These Poincaré surface of sections or Poincaré sections
allow the location of stable periodic and quasi-periodic orbits to be computed. For the
PCRTBP in R4, the surface of section is specified by fixing one of the coordinates in order
to produce a surface in R3. In this analysis, the surface of section is specified by y = 0
along the x-axis opposite Europa (see Figure 4).

PLANAR GANYMEDE TO EUROPA TRAJECTORY

This analysis focuses on a nearly planar low thrust trajectory developed by Lam7 us-
ing Mystic which travels from near Ganymede to Europa in the Jupiter-Europa CRTBP.
This trajectory is shown in both the inertial and rotating frames in Figure 2. As mentioned
previously, the convergence process in Mystic did not allow the trajectory to remain com-
pletely planar, but the maximum deviation from the plane was only 7.4 km or 1.1 × 10−5

dimensionless distance units. This was judged to be sufficiently planar that the previously
developed techniques should still be adequate for this analysis. Examining the trajectory
in the inertial frame indicates the possible presence of three distinct periods or resonances.
The variation in the number of loops on the trajectory in the rotating frame also confirms
that the trajectory is traveling through at least two resonances. This is not as clear as in the
case of the impulsive planar Europa Orbiter (PEO) trajectory analyzed previously1, 2, as the
energy is changing at many points on the trajectory rather than just at two points. Finally,
the trajectory as it approaches Europa appears to possess the characteristics of a Distant
Retrograde Orbit (DRO).
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Figure 2 The planar low thrust trajectory traveling from near Ganymede to Europa.

The effect of low thrust on the characteristics of the trajectory may be quantified using
both two-body and three-body parameters. The thrust profile over the trajectory shown in
Figure 3(a) indicates the presence of multiple extended periods of thrusting. Even during
the regions that appear to be gaps, thrusting on the order of 1.0 mN takes place. Examining
the Jacobi constant in Figure 3(b) confirms the expectation that the Jacobi constant under-
goes its major changes during periods of higher thrusting. The slight changes observed in
the other regions are due to the fact that some small thrust is still being applied. At first it
seems curious that, unlike the PEO, this trajectory is traveling from a higher Jacobi con-
stant to a lower Jacobi constant. However, it should be noted that the low thrust trajectory
is traveling from Ganymede which would generally have a high Jacobi constant of approx-
imately 3.15 if it were computed in the Jupiter-Europa system. The PEO is attempting
to approach Europa from a more energetic trajectory which would correspond to a lower
Jacobi constant. The two-body period in Figure 3(c) appears to undergo some changes as
a result of the thrusting, but the variations elsewhere along the trajectory arise from the
three-body perturbations. These results are consistent with those of the PEO which saw
changes in the period between ∆Vs as a result of flybys.

Previously analyzed trajectories3 have a demonstrated relationship with the invariant
manifolds of unstable periodic orbits, so it is expected that the low thrust trajectory may
possess a similar connection. Determining whether such a relationship exists requires the
computation of the invariant manifolds of the correct unstable periodic orbits at each energy
level found on the low thrust trajectory. The relevant unstable orbits may be unknown
initially, but at least for resonant orbits, a guess as to the appropriate resonance may be
obtained by using the two-body periods calculated along the trajectory. The technique
developed in previous papers of using Poincaré sections to visualize the relationship of
the trajectory to the invariant manifolds is used here with a Poincaré section including the
relevant dynamical structures.
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Figure 3 Changes in three-body and two-body parameters compared to the thrust profile.
Gray shading indicates periods of significant thrust. The two-body period was computed with
respect to the barycenter. The dimensionless time is indicated by t.

First, however, the intersections with the surface of section† of the instantaneous state
on the low thrust trajectory integrated forward and backward in time were computed. In
this process, the state at each point on the low thrust trajectory was first selected neglecting
the z components. This state was then integrated backward in time without thrust until it
intersected the surface of section, and this point was recorded. Next, the same state was
integrated forward in time without thrust until it intersected the surface of section. This is
illustrated for a single point on the low thrust trajectory in Figure 4. This process allows
a comparison of these points with the invariant manifolds at the surface of section rather
than attempting the rather more difficult proposition of comparing the trajectories to the
invariant manifolds in phase space. Examining these intersections by themselves in Figure
5 reveals structures that appear to be somewhat similar to the invariant manifolds computed
for the PEO trajectory. This indicates the existence of a possible relationship to the invariant
manifolds, but a more thorough analysis including the various dynamical structures at each
energy level must be performed.

†Note that the surface of section used throughout this paper is at the same location as shown in Figure 4.
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Figure 4 Illustration of the computation of the points in the Poincaré section for the low thrust
trajectory. The points integrated without thrust intersect the surface of section at different
points from the low thrust trajectory.
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Figure 5 Intersections with the surface of section of individual points on the low thrust trajec-
tory integrated forward and backward in time. The instantaneous state at each point on the
trajectory was used in the integration, which did not include any thrust.

6



RESONANT ORBITS

The primary dynamical structures of interest in this anlysis are resonant orbits and
their invariant manifolds. The low thrust trajectory appears to travel between different
resonances, so it is natural to expect the existence of a relationship between this trajectory
and the three-body resonant orbits at these resonances. More specifically the relationship
to the resonant orbits possessing the same Jacobi constant is of interest. An initial guess
for a resonant orbit at a desired resonance may be obtained using the integration of large
numbers of orbits and Poincaré sections. Once this initial guess has been obtained, it may
be converged to a truly periodic orbit symmetric about the x-axis using standard single
shooting techniques8. After the initial resonant orbit has been found, the problem is then to
continue the orbit to obtain a resonant orbit at the desired energy. Although a wide variety
of continuation techniques have been developed, a simple linear extrapolation of conditions
along the x-axis was found to be sufficient for this study of resonant orbits. Once a series
of orbits across a range of Jacobi energies have been found, a simple secant method can be
used to compute a resonant orbit at any desired energy value.
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Figure 6 Continuation plot for the 3:4 and 5:6 resonant orbits. The points represent the initial
conditions on the x-axis for each of the converged orbits. Each family is labeled first by the
resonance. They are then labeled according to whether they pass through the inner (I) region
between Jupiter and Europa or the outer (O) region. Finally, they are also labeled according
to whether a loop exists on the line of syzygy (L) or not (N).

The continuation plots in Figure 6 give a summary of the families of orbits found at the
3:4 and 5:6 resonances using the current techniques. Although not necessarily expected, it
appears that several different types of unstable resonant orbits may exist at each resonance
for a given energy level. In each case the family was continued until the linear extrapolation
method failed to converge on a trajectory in the same family. In these cases, the points on
the continuation plot typically took an abrupt turn as can be seen in Figure 6(b) where the
5:6-NI family turns, and the family can no longer be continued using this method. This
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might be a sign of a bifurcation, but additional techniques would be required to analyze
this phenomena.

A selection of the converged orbits in the 3:4-LO and 5:6-LO families are shown
in Figures 7 and 8 at even intervals of energy. These families were found to be of the
most interest for the given low thrust trajectory. It can also be noted that the limit in the
continuation is often either the point where the family encounters Europa or where a change
in the topology of the trajectory occurs. For a more detailed analysis of all of these families
see Anderson3.
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Figure 7 Orbits in the 3:4-LO family. The Jacobi constant of the two bounding trajectories are
labeled, and the intermediate trajectories vary linearly in their Jacobi constant in increments
of 0.003.

COMPARISON WITH INVARIANT MANIFOLDS

Ideally, a study of the relationship of the low thrust trajectory to the invariant mani-
folds of unstable orbits would include a comparison in phase space of each instantaneous
point on the trajectory with the invariant manifolds computed at the energy of that point.
As mentioned previously, this approach quickly becomes cumbersome even in configura-
tion space, making the use of Poincaré sections desirable. These Poincaré sections were
computed for each of the desired points on the trajectory in order to understand how the
low thrust trajectory moved relative to the invariant manifolds as thrust was applied. The
initial portion of the low thrust trajectory contained points at Jacobi constants above the
range computed for the unstable resonant orbit families. Therefore, this analysis starts ap-
proximately 14.3 days after the initial epoch on the low thrust trajectory. The Poincaré
sections computed for each point on the low thrust trajectory were generally viewed as a
movie of which some of the frames are discussed next.

8



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Jupiter

C = 3.004

C = 2.986

x

y

(a) Resonant Orbit Family Overview

0.7 0.8 0.9 1 1.1 1.2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Europa

C = 2.986

C = 3.004

x

y

(b) Boxed Region

Figure 8 Orbits in the 5:6-LO family. The Jacobi constant of the two bounding trajectories are
labeled, and the intermediate trajectories vary linearly in their Jacobi constant in increments
of 0.003.

The first frame shown in Figure 9 starts off at the highest Jacobi constant in this anal-
ysis‡. The same convention introduced earlier holds here where a black point represents a
state on the low thrust trajectory integrated forward, while a gray point represents a back-
ward integration. Now, however, only the two points corresponding to the energy level of
the specified Poincaré section are plotted. In this first frame, the point obtained from the
backward integration is not visible as it is to the left of the plot, but the forward integration
gives a point somewhat distant from the invariant manifolds. It is suspected that it might
lie close to the invariant manifold of another unstable resonant orbit that was simply not
computed for this study. As time progresses though, the stable invariant manifold of the
3:4 resonant orbit appears to approach the forward integration intersection as it also moves
slightly. In Figure 9(e) as the point integrated backward comes closer to the stable manifold
of the 3:4 resonant orbit, the forward integrated point is found to lie nearer the 3:4 resonant
orbit close to its unstable manifold. This observation makes sense as it would be expected
that points close to the stable manifold of an unstable orbit would come closer to that orbit
over time. The relationship with the stable manifold is even more clearly seen in Figure
9(f) where the thrust has modified the trajectory so that the backward integration appears to
lie on the stable manifold of the 3:4 orbit. The next intersection then lies nearly on top of
the 3:4 orbit, just as the stable manifold would behave. Overall it is also interesting to ob-
serve the changes in the invariant manifolds of the resonant orbits over the range of Jacobi
constants in the frames in Figure 9. The invariant manifolds move from having relatively
few intersections with themselves to possessing the large number of intersections at many
resonances seen in Figure 9(f). The optimization algorithm appears to be using low thrust

‡Note that the same color convention used in Figure 9(b) applies to all of the Poincaré sections. The labels
are typically not shown so that the manifolds are not obscured.
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both to move the intersection of the trajectory around the Poincaré section as well as to
move to different energies where the invariant manifolds are located in positions that may
be used by the trajectory.

In Figure 10, the series of plots begins with the backward integrated point located near
the previous location of the forward integrated point. This switch often occurs when the tra-
jectory passes through the surface of section. The forward integrated point now lies nearly
on the unstable manifold of the 3:4 orbit. This makes sense as the backward integrated
point actually lies just off the 3:4 orbit on its unstable manifold, and the next intersection
is naturally further away from the 3:4 orbit on the unstable manifold. As time continues,
the thrust is used to move the backward integrated point slightly toward the stable manifold
of the 5:6 orbit. As this is done, the forward integrated point moves backward along the
unstable manifold of the 3:4 orbit in the Poincaré section. It then continues to generally
follow the unstable manifold of the 3:4 orbit which lies very near the unstable manifold of
the 5:6 orbit. Remember that it is the optimization algorithm that has selected this path for
the trajectory, and it is very interesting that nearly all the points in the sequence lie very
near the unstable manifold. It indicates that the optimization algorithm has converged on
the invariant manifolds as optimum pathways between resonances. The relationship of the
low thrust trajectory to the invariant manifolds over time can be even more clearly seen by
plotting each of the intersections of the low thrust trajectory over the time range covered by
Figure 10 as was done in Figure 11. Here, although the energy is changing over this time
range, the difference in the invariant manifolds is small enough that the way in which the
low thrust intersections follow the invariant manifolds may still be observed.

The frames in Figure 12 continue the sequence starting at the next major thrusting
period. The first five frames at the beginning of this thrusting period reveal significant
changes in the location of the forward integrated point as it appears to move from the
3:4 resonance in the previous sequence of plots to the 5:6 resonance along the unstable
manifolds of the 3:4 and 5:6 orbits. Through this process, the backward integrated point
moves slightly along the stable manifold of the 5:6 orbit as it begins to approach the 5:6
orbit. As before, it is not unexpected that the fact that the backward integrated point lies
near the stable manifold of the 5:6 orbit would produce a forward integrated point that is
then closer to the general vicinity of the 5:6 orbit. The fact that the forward integrated
point lies near the unstable manifolds of both the resonant orbits is curious. Integrating
the point on the stable manifold of the 5:6 orbit closest to the backward integrated point
shows that the next intersection of the stable manifold is nearly on top of the 5:6 orbit.
So the slight difference in initial conditions between the stable manifold of the 5:6 orbit
and the backward integrated point result in a large difference in the location of the next
intersection. Overall, this sequence of plots aids in revealing the method by which the
optimization scheme has used low thrust to perform a resonance transition. In Figure 12(f),
the backward integrated point continues to move along the stable manifold of the 5:6 orbit,
and the forward integrated point moves past the 5:6 resonance. Beyond this time period,
the trajectory begins the approach phase at Europa using a DRO. Further analysis at this
point requires the selection of a new surface of section, since the current surface of section
is on the opposite side of Jupiter from the DRO.
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Figure 9 Poincaré sections (a−f) for various points on the low thrust trajectory. The verti-
cal lines on the Jacobi constant plot (top) indicate the times corresponding to each Poincaré
section which are plotted sequentially.

11



0 10 20 30 40 50 60 70 80 90
2.995

3

3.005

3.01

3.015

3.02

t

C

(a) (b)

(c) (d)

(e) (f)

Figure 10 Poincaré sections (a−f) for various points on the low thrust trajectory. The verti-
cal lines on the Jacobi constant plot (top) indicate the times corresponding to each Poincaré
section which are plotted sequentially.
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Figure 11 Summary plot showing the intermediate low thrust trajectory intersections leading
from Figure 10(a) to Figure 10(f). The background points and the invariant manifolds are
plotted at the energy level of Figure 10(f), and the empty circles indicate intersections com-
puted at a different energy levels. The initial points appear black because there are so many
of them, but the only point at the current energy level is the point labeled f.
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Figure 12 Poincaré sections (a−f) for various points on the low thrust trajectory. The verti-
cal lines on the Jacobi constant plot (top) indicate the times corresponding to each Poincaré
section which are plotted sequentially.
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CONCLUSION

The fact that most of the intersections of the low thrust trajectory lie very near the
stable or unstable manifolds of one of the resonant orbits indicates that the optimization
algorithm is converging on trajectories that generally follow the invariant manifolds. This
result is especially interesting since the optimization algorithm does not incorporate any
knowledge of the invariant manifolds in its search for a trajectory. Knowledge of this
relationship has the potential to be very useful in developing initial guesses for these op-
timization algorithms, and ultimately it should aid in developing control laws for new op-
timization algorithms that could find pathways for low thrust trajectories using invariant
manifolds.

In these three papers, we have demonstrated that invariant manifolds do indeed play a
significant role in the dynamics of low thrust trajectories moving through unstable regions.
Resonant orbits, which play such an important role for impulsive planetary flybys, also play
an important role for low thrust trajectories. In fact, we have shown that planetary flybys
are also dynamically controlled by invariant manifolds of unstable resonant orbits, despite
the fact that they are typically designed using patched conic methods with great success.

Finally, in this last paper, we have demonstrated that kinematically low thrust tra-
jectories closely track the invariant manifolds of the unstable resonant orbits. From this
observation there are several near-term projects that should be investigated.

FUTURE WORK

We have but scratched the surface in our investigation of the dynamical role of in-
variant manifolds in the control and optimization of low thrust trajectories. Nevertheless, it
would be exciting to develop some rough algorithms to produce initial guess trajectories as
inputs for optimization programs such as Mystic and compare the time savings from more
conventional initial guess solutions.

Another longer term and more academic project is the investigation of the topology
and geometry of invariant manifolds of unstable resonant orbits and their role in the op-
timization of low thrust trajectories. In our second paper (Anderson and Lo, 2004), the
intersection geometry of the invariant manifolds of resonant orbits dictated the need for
maneuvers. It would be interesting to investigate how the thrust profile of the low thrust
trajectory compares with the intersection geometry of the manifolds. Another interesting
problem, perhaps less profound . but who can say for sure, is the manner in which the low
thrust trajectory is cutting through the invariant manifolds. For example, what is the angle
of the thrust vector to the invariant manifold surface (in the planar RTBP)? What does the
control of this angle do? How does this angular profile compare with the gradient across the
surfaces of the invariant manifold? With the recent advances in computational differential
geometry and algebraic topology, it would seem that many advanced tools are just waiting
for us, engineers, to make use of them.

Although we have only examined the role of invariant manifolds in low thrust trajec-
tories going through unstable regions, they also play a similar role in stable regions. In
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fact, a surprising thing at first is the observation that low thrust trajectories through unsta-
ble regions are easier to design (using a tool like Mystic) than the spiral trajectories in the
two-body problem. Here is a rich problem indeed that needs to be examined using more
advanced mathematical methods. While stable and unstable manifolds do not play a role
here, the invariant tori of stable elliptical trajectories do indeed play a role. A similar type of
analysis can and should be performed for such trajectories to obtain better approximations.

Lastly, the understanding that invariant manifolds play a central role in impulsive
planetary flyby trajectories is very exciting indeed. Perhaps this is not so surprising since
Tisserand.s Criteria for comets is just the linearization of the Jacobi constant. This means
that we can reconceptualize planetary flyby trajectories using invariant manifold theory just
as we have been doing for libration orbits and low energy orbits in general. The distinction
between high and low energy orbits is perhaps not as distinct as we have once thought. The
implication of this observation is that one can conceive of a unified theory to describe both
low energy and high energy trajectories, and both impulsive and low thrust trajectories.
This unification, while interesting and beautiful in itself, has far reaching consequences for
the future of astrodynamics and mission design.

For instance, because invariant manifolds can be predicted and precomputed as maps
on board spacecraft, it is conceivable that autonomous on-board trajectory design and opti-
mization as well as mission design and planning may be achieved in the near future. These
maps do not need to be full blown ephemerides, one need only a network of initial condi-
tions perhaps even using a simple model like the CRTBP. By continuation methods and in-
terpolation, full ephemeris model trajectories may be generated on board future spacecraft
to perform the mission design and optimization. But even before going on-board space-
craft, such a technology will greatly speed up our ability to design, analyze, and optimize
complex missions in multi-dynamical regimes and with any combination of propulsion
systems.

Clearly, there is a lot of work ahead of us. Perhaps with these ideas we can approach
funding agencies, policy makers, and university departments to obtain support for research
and technology development. Astrodynamics is by no means a done deal, despite our
many successes in the last century. We are on the verge of a new intellectual revolution
in astrodynamics that will help us explore and develop the Solar System in ways that were
beyond our reach in the last century.
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