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Atom Interferometer Inertial Sensors In
Space
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NASA ESD Technology Program Synergy

Completed: Advanced Technology Component -

laboratory experiment and component technology. R

Currrent: Instrument Incubator Program. \
Objective: developing a portable gradiometer Engineerin satellite
instrument prototype. g model
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3 Year program.

Underground facility
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Forward Estimation

Gravity potential Gravity gradient G
— o
¢(F):ZG m; Gy =7,0; =—7;¢(r)
i ‘r —r i‘ Measurable directly by
gradiometer

Forward problem: the gravity field ¥(r) produced by a mass
distribution my(r,).
Inversion problem: obtain information about my(r,) from ‘¥(r).
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Gravity Field of a Prism Mass
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Gravity Gradient Field Property

Since Gj;oc(ry/z,)°, the plot can be viewed as the normalized
plot with height to linear target size ratio R, of 10. Of
course, the overall signal strength falls off with (1/z,) 3.

As the detector 1s further away from the source, the signal 1s
weaker and also more spread (over the distance ~ altitude

Zy)-

The diagonal component G, provides twice the signal size
as rest of the tensor components. But other components may
be necessary to derive other information about the target or
discriminate against unwanted noise.

Atry/z,=0.1, small (<10%) difference between a prism and
a sphere mass distributions.
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Inversion Based on Local Gravity
Anomaly

Assumed 1nversion strategy for the estimation

In order to estimate the required sensitivity, we assume that the inversion is done by
taking the residual of what’s measured from what’s modeled from surface
measurements and known local geology (i.e. mean density of the mass distribution
underneath.

Fij o Measured gradient\
\ modeled gradient

Residual gradient

v

The residual is used to determine the unknowns underground. Much sophisticated
inversion algorithms can be developed to extract the unknown from the residual. But
to the 1st order, there must be enough detected residual signal that is comparable to
the gradient amplitude due to the source of interest as a monopole.
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Target Location Estimate

If one requires the knowledge of target location to 6x = (0I'/T")z, it must have the gradient
resolution on the order of 6x/z, where z, is the altitude or the gradient signal spread.

A
Center determination precision

Ox =~ (zo/2)/SNR

XX

v

A
v

Note that the location estimation accuracy and the SNR of the measurement are also directly related
to the resolving power of the different targets. When the data is sufficient in determining the single
target to Ox, it should be close in resolving the two targets separated by ox to the first order.
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Location Positioning Resolution

To scale the detection with the criteria such that the location determination is
the linear size of the target, then we have the condition: o6x=r,= (3I'/T',)z,,
where I, is the gradient near Earth surface. This results in:

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Because of the square root 4th power 1n the gradient sensitivity, the
resolving power is a very slow function of the instrument sensitivity.

Use 0.1 EU as the instrument resolution at 100 m height,

oI'T,=0.1/3300, r/z,=0.074, r, = 7 m.
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Atom Interferometer with Light Pulses

Quantum particle-wave duality

m

de Broglie wave: 4,5=h/mv

Al as an Accelerometer

Atom-wave Mach-Zehnder Interferometer No acceleration, total phase
N\/ shift difference 1s AD® =0
e |
fringes With an acceleration g, the
Atomic beam phase difference 1s

AD = 2kgT?

where kis the laser _
t wavenumber and 7the time
> interval between laser pulses.

Splitter/mirror functions are accomplished by interaction with laser pulses.
(M. Kasevich and S. Chu Phys. Rev. Lett. vol. 67, p.181, 1991)

JH Quantum Sciences and Technology Group Feb. 14th, 2006



Gradient Extraction From Acceleration

Measurements
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Full Tensor Configuration

1
L - For a full tensor determination,
< as many as fourteen (14)
! — ! y Interferometers may be
necessary.
X I

Possible implementation
with 12 interferometers with
simultaneous all-component
acquisition.
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Atom Interferometer Development at JPL

First JPL experimental setup
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Instrument Development: Laser System

U S
. P‘é%—k’gged / i -

laser and / - =T

| >

Injection lodked slave laser

The laser system consists of functional modules interconnected with fiber optics
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Instrument Development:
Compact Cold atom source

Compact size: 3cmx 3 cm x 5cm

A multi stage 2D-MOT source

Beam splitting cubes with T/R ratios
For light with s-polarization

0/100 50/50 66/33

N (am—

A4 plates —» —— —— ——

w S-polarized laser

Extraction/differential
pumping hole
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Laboratory System
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Planar Inversion Approach

The gravity gradient arising from a three-dimensional q)__(?) — J K--(T’ _'|.'g) G(ﬁ)dzﬁ
ij ij

distribution of mass density takes the form

> 3
o, =] K,F-R) AR 'R
> rr, —r's,
Ky (r) = GT
One useful constraint on the inversion, which
usually results in a well-posed problem, is to

restrict the sources to a two-dimensional surface

One formal approach to the inversion
Is to take the Fourier transform of
each side.

@ (k) =K; (K 5(k)

Spectral deconvolution involves
solving this equation for the Fourier
transform of the source distribution:

~

@, (k)
K; (k)

Source: Larry Roman, JPL

5(k) =
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Ground measurements

Ground measurements inside and Ground measurements inside and Ground measurements outside perimeter

outside outside Source scale = 10"4 m”3, 50m deep

Source scale = 1074 m”3, 50m deep All components, sigma = 1 Eotvos

77 component, sigma = 1 Eotvos (poor recovery inside)

Source scale = 104 m"3, 50m deep

All components, sigma = 1 Eotvos
(poor recovery)

(good recovery)
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Ground+Airborne measurements

Ground measurements outside +
airborne at 0.25 km

Source scale = 10”4 m”3, 50m deep
All components, sigma = 1 Eotvos

(poor recovery inside)

cedsitn ond ohmm, ol cemperants dote, wg = 1 EU {ane M)

Ground measurements outside +
airborne at 0.25 km

Source scale = 104 m”3, 50m deep
ZZ component, sigma = 0.1 Eotvos
(somewhat better recovery)
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Ground measurements outside +
airborne at 0.25 km

Source scale = 104 m”3, 50m deep
77 component, sigma = 0.03 Eotvos
(good recovery)
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Data Rate, Sensitivity and Spatial Resolution

............ L
The moving platform issue: r 7
altitude
Platform speed at v. z,
. Ce T 7 v
Acceleration sensitivity A¢ /2kT?, < Q\/\
Earth surface

(A, =n/SNR). X
Acceleration res. Ag = Ad, (T/t)"2/2kT>?

(where 7 1s the total time at single measurement point).
Spatial resolution Ax oc VT.

Ag e Ax¥? = v32/2k t1?(SNR)

Slow platform speed really helps!
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summary

e Atom interferometer based inertial sensors hold
great promises for applications in space and for UGS
detection from land and airborne measurements.

« JPL is developing towards a cold-atom gravity
gradiometer prototype. The instrument will be
portable and designed for airborne test.

» Technology synergy and engineering heritage exist
from other NASA cold atom space instrument
development.
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