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The research reported here extends the mathematical formulation of nonlinear, 
sigma-point estimators to enable consider covariance analysis for dynamical 
systems.  This paper presents a novel sigma-point consider filter algorithm, for 
consider-parameterized nonlinear estimation, following the unscented Kalman 
filter (UKF) variation on the sigma-point filter formulation, which requires no 
partial derivatives of dynamics models or measurement models with respect to 
the parameter list.  It is shown that, consistent with the attributes of sigma-point 
estimators, a consider-parameterized sigma-point estimator can be developed 
entirely without requiring the derivation of any partial-derivative matrices 
related to the dynamical system, the measurements, or the considered 
parameters, which appears to be an advantage over the formulation of a linear-
theory sequential consider estimator.  It is also demonstrated that a consider 
covariance analysis performed with this “partial-derivative-free” formulation 
yields equivalent results to the linear-theory consider filter, for purely linear 
problems. 

 
 
INTRODUCTION 

Consider covariance analysis entails conservatively calculating the formal uncertainty associated 
with estimating a list of states and parameters, while omitting to estimate some constant parameters whose 
values are in error.1 Considering parameters in a dynamical system while estimating its state provides a 
upper bound on the formal estimated state error covariance, which is a conservative approach to designing 
estimators for problems of general guidance, navigation and control.  This is true because error in the value 
of a non-estimated parameter increases the estimation error of the system beyond the level formally 
indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter.   
 

Because consider covariance analysis represents a conservative engineering approach of 
estimating and predicting spacecraft trajectories, consider covariance capabilities are featured in some 
established orbit determination filter codes that are used in ground-based space flight operations.  Hence, 
the ability to perform consider covariance analysis within the mathematical framework of a branch of 
estimation theory (e.g. with a batch filter formulation, or in classical linearized or extended sequential 
estimator formulations) enables that theoretical branch to be employed in the context of operational orbit 
determination, particularly for deep-space missions with stringent targeting requirements. 
 

Recent literature in applied estimation theory reflects broad and growing interest in applying 
sigma-point (also called “unscented”) formulations [c.f. 2, 5] to problems in nonlinear optimal sequential 
state estimation.  These references often provide performance comparisons with the extended Kalman filter 
(EKF) algorithm, as applied to specific dynamical problems [c.f. 3, 4].  Favorable attributes of sigma-point 
filters over linear-theory sequential estimators such as the EKF are described as including a lower expected 
estimate error for nonlinear – even non-differentiable – dynamical systems, and a straightforward 
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formulation not requiring derivation or implementation of any partial derivative Jacobian matrices.  In light 
of these advantages of the sigma-point filter, it was sought in the present research to extend sigma-point 
estimation formulation (i.e. a Jacobian-free formulation, in which the state formal uncertainty is mapped in 
time by using nonlinear equations of motion to propagate a set of points from the surface of the covariance 
hyperellipsoid) to consider covariance analysis for dynamical systems.   
 

The remainder of the paper will discuss a novel sigma-point consider filter algorithm developed as 
part of this research, with an example demonstration of its use.  Aspects of implementing a consider 
covariance tool following this sigma-point approach will be compared with implementing consider 
covariance in standard sequential estimators.  In particular it is shown that, consistent with the attributes of 
sigma-point estimators, a consider-parameterized sigma-point estimator can be developed entirely without 
requiring the derivation of any partial-derivative matrices related to the dynamical system, the 
measurements, or the considered parameters.  This simplicity of formulation, with no loss in estimation 
accuracy, appears to be a distinct advantage over developing a consider covariance capability using a 
standard, linear-theory sequential estimation algorithm such as the EKF.  As will be demonstrated, consider 
covariance analysis techniques such as sensitivity analyses can be addressed with this “partial-derivative-
free” formulation. 
 

First, an overview of the Unscented Kalman Filter (UKF) sigma-point algorithm in the next 
section, followed by a review of the linear-theory consider-covariance filter algorithm, provides context 
and a basis of comparison for the new sigma-point consider covariance filter algorithm.  Then, the new 
sigma-point consider covariance filter algorithm is described and discussed.  Finally, a numerical example 
comparing the use of the linear-theory consider filter with the sigma-point consider filter will illustrate that 
the two significantly different filter formulations result in identical results for a linear system, as expected. 
 
 
OVERVIEW OF THE UNSCENTED KALMAN FILTER ALGORITHM 

The unscented Kalman filter (UKF) is one member of the family of sigma-point filter algorithms.  
The UKF was developed as an alternative algorithm to the prevalently-used Extended Kalman Filter (EKF) 
for sequential nonlinear estimation.  Like all sigma-point filters, the UKF features a weighted statistical 
linear regression technique for calculating terms in the Kalman update rule.  Weighted statistical linear 
regression techniques linearize nonlinear functions of random variables while including information on the 
random variable’s actual uncertainty.  The random-variable function, of dimension L, is linearized by 
regressing between (2L + 1) points sampled from the a-priori uncertainty, that are updated using the full 
nonlinear models of the function.  This differs from the standard linear-theory approach to estimation, in 
that the latter approach operates on truncated Taylor-series expansions about the expected value of the 
random-variable function, i.e. only using information from a single point.  For further discussion of the 
theory of sigma-point filters and its distinctions from linear-theory filtering, the reader is referred to an 
article by van der Merwe and Wan5. 
 

Comprehensive discussions of the UKF origins and derivation, and demonstrations of its accuracy 
in solving nonlinear estimation problems, its runtime performance, and implementation aspects, in 
comparison with the EKF can be found in numerous references in the recent literature of applied estimation 
theory [c.f. 2, 5, 6, 8]..  However, a summary of the algorithm and brief discussion of the UKF algorithm 
facilitates and frames the later discussion of consider-covariance extensions to the UKF.  Summarizing the 
steps of the UKF implementation as described by Crassidis and Junkins6, given the estimated parameter list 
Xest

nℜ∈ , its associated (n x n) error covariance matrix  at epoch t+
−

xc
1kP k-1, plus (n x n) process noise 

matrix Qk-1, we compute a set of (2n + 1) sigma points: 
 

( ) 1k
xx

1kx1k QPnfromcolumnsn2 −
+

−− ++±= λσ    (1) 
 

+
−− = 1k,est0,1k Xχ        (2) 
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n2,1,0iX i,1k1k,esti,1k L=+= −

+
−− σχ    (3) 

 
The (2n + 1) sigma points are mapped in time from epoch tk-1 to epoch tk using the (n x 1) vector 

integral, f, of the nonlinear equations of motion for the dynamical system: 
 

( ) n2,1,0i,u,,t,tf 1ki,1kk1ki,k L== −−− χχ    (4) 
 

The predicted expected value of the estimated state is calculated as: 
 

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

+
+

= ∑
=

−
n2

1i
i,ko,kx

x
k,est 2

1
n

1X χχλ
λ

    (5) 

 
The predicted state error covariance matrix (n x n) at epoch tk is calculated as the weighted sum of 

auto-correlations of the vector differences between (2n + 1) predicted χ points and the predicted expected 
value of the state, i.e.: 
 

( )( ) ( )(
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

−−+−−
+

= ∑
=

−−−−−
n2

1i

T
k,esti,kk,esti,k

T
k,esto,kk,esto,kx

x

xx
k XX

2
1XX

n
1P χχχχλ
λ

)  (6) 

 
The mean modeled measurement is given by (m x 1) matrix, which is calculated as: 

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

+
+

= ∑
=

−
n2

1i
i,ko,kx

x
k 2

1
n

1ŷ γγλ
λ

     (7) 

 
in which the (2n + 1) sigma points are mapped to measurement space by the (m x 1) vector nonlinear 
measurement model h: 
 

( ) n2,1,0i,u,,th ki,kki,k L== χγ     (8) 
 

The cross-correlation matrix between the state errors and the associated measurement model errors 
is (n x m) matrix: 

( )( ) ( )(
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

−−+−−
+

= ∑
=

−−−−
n2

1i

T
ki,kk,esti,k

T
ko,kk,esto,kx

x

xy
k ŷX

2
1ŷX

n
1P γχγχλ
λ

)   (9) 

 
Now, (m x 1) measurement residual νk is computed by differencing the vector Yk of measurements 

at epoch tk with the mean modeled measurement: 
 

−−= kkk ŷYν        (10) 
 

The covariance of the modeled measurement errors (due to predicted state errors) is (m x m) 
matrix: 

( )( ) ( )(
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

−−+−−
+

= ∑
=

−−−−
n2

1i

T
ki,kki,k

T
ko,kko,kx

x

yy
k ŷŷ

2
1ŷŷ

n
1P γγγγλ
λ

)   (11) 
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The covariance of the observation residual, which is a function of both intrinsic measurement 
noise covariance R (m x m) and also measurement model error covariance Pyy, (m x m), is simply: 

 
RPP yy

kk +=νν        (12) 
 

The (n x m) optimal gain matrix mapping the measurement residuals into estimated state space 
(i.e. the Kalman gain) is: 
 

( ) 1
k

xy
kk PPK

−
= νν        (13) 

 
Finally, the estimated parameter list Xest at epoch tk and its associated error covariance are 

updated with observation information by the equations: 

+xc
kP

 

kkkestkest K)t(X)t(X ν+= −+ , and     (14) 
 

T
kkk

xx
k

xx
k KPKPP νν−= −+       (15) 

 
Note that the UKF algorithm above requires no partial derivatives with respect to the parameter 

list of either the dynamical equations of motion (i.e. a state transition matrix) or the measurement model 
(i.e. the measurement partial derivative Jacobian). Also, note that Eqs. (12) through (15) constitute generic 
expressions for a Kalman filter algorithm.  For instance, linear-theory versions of the Kalman filter (such as 
the Extended Kalman Filter algorithm, as presented, for example, in Tapley, Schutz and Born1) contains 
identical expressions for measurement model error covariance, Kalman gain, and update of parameter list 
and its error covariance, if one defines linear-theory versions of the two covariance terms below: 
 

T
x

xx
x

yy
linear HPHP −≡ , and      (16) 

 
T
x

xxxy
linear HPP −≡        (17) 

 
Hx is the partial derivative Jacobian of the measurement model h with respect to the parameter list 

Xest.  With these definitions, for example, the linear-theory expression for the Kalman gain is seen to be 
identical to Equation (13) above: 
 

( ) ( ) 1
linear

xy
linear

1T
x

xx
x

T
x

xx
linear PPRHPHHPK

−−−− =+= νν   (18) 
 
 
LINEAR-THEORY CONSIDER KALMAN FILTER ALGORITHM 

In order to provide a basis for discussing the extension of the sigma-point filter formulation to 
consider-covariance analysis, this section recapitulates (in brief summary, with minor changes in 
symbology) the algorithm for a linear-theory consider covariance filter algorithm that is fully derived in the 
text by Tapley, Schutz and Born1. 
 

In the problem of consider filter analysis, a vector C  of constant non-estimated parameters 
(which appear in the filter models of the system dynamics or of the measurements) has errors with constant 
(p x p) covariance matrix .  The effect of the error in C on the (n x 1) estimated parameter list X

pℜ∈

ccP est is to 
increase the uncertainty  of XxxP est.  The increased uncertainty is due to the additional effect of error 
covariance  for consider parameter list C. ccP
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The list of constant consider parameters C augments the (n x 1) estimated parameter list Xest, to 

form partitioned consider state vector, Xcons
pn+ℜ∈ : 

 

)1xp(
)1xn(

C
X

X est
cons ⎥

⎦

⎤
⎢
⎣

⎡
≡       (19) 

 
The associated consider covariance Pcons is partitioned according to Xcons, i.e.  

 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=
≡

cc
)pxp(

Txccx
)pxn(

xc
)pxn(

xx
)nxn(cons

cons
PPP

PP
P      (20) 

 
Note that the sub-matrix associated with Xxx

consP est in the context of considering errors in C will 
not in general be equal to the estimation-only covariance Pxx associated with estimating Xest (and neglecting 
errors in C).  The relationship between these two matrices will be defined further below. 
 

At epoch tk, the inputs , , , Y+
−1k,estX +

−
xx

1kP +
−

xc
1kP k, Rk, , C, and  are given, in which the 

symbols “-“ and “+” reflect that a quantity is a best estimate, respectively before or after measurement 
information is incorporated, and in which: 

1kQ −
ccP

 
Yk (m x 1) is a vector of measurements made of the system at epoch tk
Rk (m x m) is the covariance of intrinsic (vs. modeled) measurement noise, and 
Qk-1 (n x n) is the process noise covariance for time interval [tk-1, tk] 

 
With these input data, the linear-theory consider filter starts by propagating the state vector and 

covariance information through time from epoch tk-1 to epoch tk by the following procedure. 
 

( )1k1k,estk1kk,est u,C,X,t,tfX −
+

−−
− =      (21) 

 

 ( ) ( ) ( ) It,t;d,t
X

ft,t 1k1k1k

t

t est
k1k

k

1k

=ΦΦ
∂

∂
=Φ −−−− ∫

−

ττ    (22) 

 

( ) ( ) ( ) 0t,t;d
C
f,t

X
ft,t 1k1k

t

t
1k

est
k1k

k

1k

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

+
∂

∂
= −−−− ∫

−

θττθθ   (23) 

 
( ) ( )k1k

Txx
1kk1k

xx
k t,tPt,tP −

+
−−

− ΦΦ=      (24) 
 

( ) ( ) 0P,Pt,tPt,tP xc
0

cc
k1k

xc
1kk1k

xc
k =+Φ= +

−
+

−−
− θ     (25) 

 

( ) ( )Txc
k

1ccxc
k

xx
k

xx
k,cons PPPPP −−−−− +=      (26) 

 
in which: 
 

f is the (n x 1) vector integral of the equations of motion 
Φ( tk-1, tk) is the state transition matrix (n x n) for the system 
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θ( tk-1, tk) is the state transition matrix (n x p) for the system with respect to C 
Hx (m x n)is the partial derivative of the measurement model h with respect to Xest  
Hc (m x p) is the partial derivative of the measurement model h with respect to C 

 
Next, the a-priori values of the augmented parameter list and the consider covariance are 

innovated with measurement data at epoch tk: 
 

1
k

T
k,x

xx
kk,x

T
k,x

xx
kk )RHPH(HPK −−− +=      (27) 

 
( )k1k,estkkk u,X,thY −

−−=ν       (28) 
 

kkk,estk,est KXX ν+= −+        (29) 
 

( ) T
kk

T
k,x

xx
kk,xk

xx
1k

xx
1kk,xk

xx
k K)RHPH(KPPHKIP +−=−= −−

−
−

−
+   (30) 

 
( ) cc

ck
xc
kk,xk

xc
k PHKPHKIP −−= −+      (31) 

 

( ) ( )Txc
k

1ccxc
k

xx
k

xx
k,cons PPPPP +−+++ +=      (32) 

 
The above algorithm is applied recursively in time, until all measurements have been applied or a 

desired final epoch has been reached. 
 
 
SIGMA-POINT CONSIDER KALMAN FILTER ALGORITHM 

The sigma-point consider filter algorithm discussed here was developed to enable sigma-point 
filters to be used in conditions when a conservative, consider-analysis approach to estimation is needed.  
Thus, a consider filtering algorithm was sought following the formulation of sigma-point filters, that would 
not require the derivation of partial-derivative terms, but would provide the same results as the linear-
theory filters for linear problems.   

The sigma-point consider filter algorithm is as follows.  As with the linear-theory consider filter, a 
(p x 1) list C of constant, non-estimated parameters whose errors are to be considered augments the (n x 1) 
estimated parameter list Xest, to form a partitioned consider state vector, Xcons: 
 

)1xp(
)1xn(

C
X

X est
cons ⎥

⎦

⎤
⎢
⎣

⎡
≡       (33) 

 
Also as with the linear-theory consider filter, the associated consider covariance Pcons is partitioned 

according to Xcons, i.e.  
 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=
≡

cc
)pxp(

Txccx
)pxn(

xc
)pxn(

xx
)nxn(cons

cons
PPP

PP
P      (34) 

 
Now, adapting the UKF formulation approach to computing a-priori sigma points in an unscented 

filter, first we factorize Pcons (best estimate of covariance from previous epoch tk-1) into Scons,k-1(Scons,k-1)T.  In 
order to preserve the constancy of Pcc, the lower-triangular square matrix Scons,k-1 is computed using a 
block-Cholesky decomposition7, with the initial pivot starting in the Pcc partition. 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−−

−
− cc

1k
cx

1k

)pxn(
xx

1k,cons
1k,cons

SS
0S

S      (35) 

where 
 

.constP)p(S cc
c

cc
)pxp(1k =+≡− λ      (36) 

( ) cx
1k

1cc
1k

cx
)nxp(1k PSS −

−
−− ≡ , and      (37) 

( ) .SSP)n(S cx
1k

Tcx
1k

xx
1k,consx

xx
)nxn(1k −−−− −+≡ λ    (38) 

 
and in which λc = 3 – p, and λx = 3 – n.  Equation (5) for Scx will always be analytic, because sub-matrix Scc 
is a square root of constant positive definite matrix Pcc. 

As with the linear-theory consider algorithm, the sigma-point consider filter requires that Xest and 
PP

xx be estimated with the standard sequential estimator, in this case, the UKF algorithm described in the 
section above.   

Now, in addition to estimating this nth order system, to compute the additional uncertainty from 
consider the non-estimating parameters, at epoch tk-1 we generate (2p + 1) consider sigma-points, which are 
a set1 of samples of system state realizations at its a-priori expected value and also at 2p select points on the 
uncertainty ellipsoid: 

 
p2,1,0i,X i,1k,cons1ki,1k,cons L=+= −

+
−− σχ    (39) 

 
where 00,1k,cons =−σ , and =− i,1k,consσ  ±columns (n + 1) through (n + p) of (Scons,k-1)T, containing the 
square-root of the dispersed values of consider parameter list C plus expected variations in a-priori 
estimated parameter list Xest,k-1 due to cross-correlations with C. 
 

These (2p + 1) consider sigma-points are then propagated from epoch tk-1  to epoch tk, using the ((n 
+ p) x 1) vector of nonlinear expressions for the time-evolution of the augmented state vector, e.g. the 
equations of motion for the dynamical system, augmented with a (p x 1) list of zeros to maintain the 
constancy of the consider parameters.  In this manner, we obtain the (2p + 1) predicted sigma-points at 
epoch tk: 
 

( ) p2,...1,0i,u,,t,tf 1ki,1k,consk1ki,k,cons == −−− χχ   (40) 
 

Per the unscented Kalman filter formulation, the predicted mean consider state is computed using 
the predicted sigma-points as: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

+
= ∑

=

−
p2

1i
i,k,conso,k,consc

c
k,cons 2

1
p

1X χχλ
λ

   (41) 

 
Then, the predicted consider covariance is computed as: 

 

                                                 
1 For parameter list LRX ∈  belonging to a multivariate probability distribution, 2L + 1 samples is the 
minimum needed to capture the first two moments (expected value and covariance) of the distribution. 
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( )( )

( )(
⎪⎭

⎪
⎬
⎫

−−+

⎩⎨
⎧ −−

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

∑
=

−−

−−
−

−−
−

p2

1i

T
k,consi,k,consk,consi,k,cons

T
k,conso,k,consk,conso,k,consc

c
cccx

k

xc
k

xx
k,cons

k,cons

XX
2
1

XX
p

1
PP
PPP

χχ

χχλ
λ

)   (42) 

The primary utility of matrix  is that it yields the (n x p) sub-matrix  of predicted 
cross-correlations between consider and estimated parameters.  At epochs for which measurements are 
available, the change due to the measurement information on the cross-correlation sub-matrix is calculated 
the following way: 

−
k,consP −xc

kP

 

( ) −−−−+ −= xc
k

1xx
k

T
kkk

xc
k

xc
k PPKPKPP νν     (43) 

 
The optimal gain Kk, residual covariance  and a-priori state covariance  are all obtained 

from a standard sigma-point filter (that estimates X

νν
kP −xx

kP
est and neglects errors in C) operating simultaneously in 

time with the consider filter algorithm. The above cross-correlation update expression serves the same 
purpose as, and is similar to, the cross-correlation update step (Eq. (31)) in the linear-theory consider 
algorithm.  Finally, the additive uncertainty from considering non-estimated parameters is calculated as: 
 

( ) ( )Txc
k

1ccxc
kk,cons PPPdP +−+=      (44)  

 
and the updated consider covariance matrix, post-measurement, for epoch tk is given by: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡ +

++

cccx

xcxx
cons

k,cons PP
PP

P       (45) 

 
in which the state covariance augmented for consider-parameter uncertainty ( ) is related to the 

standard state covariance  by: 

+xx
k,consP

+xx
kP

 

k,cons
xx
k

xx
k,cons dPPP += ++       (46) 

 
If no observation is available to be processed at time tk, Equations (44) and (45) are evaluated 

using  and  instead of  and .  This algorithm is recursive, so that after calculating 
, if filter processing is to continue, the time index k is set to (k-1), and the steps above are repeated at 

the next processing epoch, until all measurements have been applied or the desired end time has been 
reached. 

−xx
kP −xc

kP +xx
kP +xc

kP

k,consP

 

 

EXAMPLE CONSIDER COVARIANCE ANALYSES FOR A LINEAR SYSTEM 

A simple linear example problem appearing in the text by Tapley et al,1 is extended to the sigma-
point consider filter, to illustrate the differences in the computational steps of the linear-theory and sigma-
point versions of the consider filter algorithm, and to compare the resulting solutions. 

In the example problem, a point mass accelerates in one dimension, x, under the influence of a 
constant acceleration g.  The system is observed at two epochs, t = 0 and t = 1, with a one-dimensional 
range from the origin to the point mass location.  The effect of error in the value of the constant 

 9



acceleration on a sequential estimate of the location and velocity of the point mass will be considered in 
this example. 
 

x

g

 
For both example filters, the system model is as follows: 
 

State vector        (47) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

v
x

tX

 
The system dynamics model is given by: 

( ) ( ) ( ) ( )

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+

−
+−+==⎥

⎦

⎤
⎢
⎣

⎡
=

121

2
12

121111212
ttgv

2
ttg

ttvxu,X,t,tf)t(Xand,
g
v

tX&   (48) 

 
Scalar measurement model G(t, X(t), u(t)) = x.     (49) 

 
 
and let g = 10, arbitrarily.  Also, the following data are used in both example filters: 
 

Initial (true) state vector  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

0X

 

State vector initial covariance  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

0Pxx

 
Intrinsic measurement noise R(t) = const = 1 

 

Process noise  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
==

00
00

consttQ

 
Finally, there is an error in the model of constant “gravity” acceleration g = 1; and so the error in g is 
considered in both the linear-theory and sigma-point consider filters.  The cross-correlation PP

xc between the 
initial estimated state uncertainty and the error in g is assumed to be zero. 

 
Pcc = const = 1        

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

0Pxc         
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Next, the consider covariance is computed at times t = 0 and t = 1 using both a sequential linear-theory 
formulation and the sigma-point formulation. 
 
 (1) Linear-Theory Sequential Consider Filter Solution: 

 
This linear-theory filter solution is replicated from Tapley et al1, pages 416-419, and presented 

here to compare with the sigma-point filter solution below.  First, the Jacobian matrices required for the 
sequential linear-theory consider filter are calculated.  The partial derivative matrices of the measurement 
with respect to the estimated state list (Hx), and also with respect to the consider parameter list (Hc), are: 

 
Hx = [dx/dx  dx/dv]  =  [1   0]      

 
Hc = [dx/dg] = 0        

 
And the partial derivatives of the state vector at epoch t2 with respect to the state vector at epoch t1 

(Φ, i.e. the state transition matrix), and also with respect to the consider parameter list (θ), are:  
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So, for this example, with a fixed interval of 1 second between t1 and t2, 
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At epoch t = 0, following the linear-theory consider filter algorithm, the a-priori covariance is 

updated with the range measurement of t = 0.  First, the Kalman gain at time t = 0 is calculated: 
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and using the Kalman gain, the covariance is updated with measurement information: 
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The updated value of the cross-correlation sub-matrix at t = 0 is: 
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At epoch t = 1, following the linear-theory consider filter algorithm, the best-estimated covariance 

from time t = 0 is propagated to time t = 1: 
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The Kalman gain at time t = 1 is: 
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and we update the covariance with measurement information: 
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Then, cross-correlation matrix Pxc is propagated by:  
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and then is also updated, by: 
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Finally, the consider covariance is  

( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=+== +−+++

24.156.0
56.064.0

PPPP1tP
Txc1ccxcxxxx

cons     

 
 (2) Sigma-Point Consider Filter Solution: 

In the sigma-point consider formulation, as noted above, there are no state transition matrices, or 
partial derivatives of the measurement models, and we start by defining the augmented state vector and 
consider covariance matrix: 
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Now for this system, n = 2 and p = 1, so λx= 1 and λc = 2.  Next, per the definitions in Eqs. (36) 

through (38), we take the lower-triangular block-Cholesky root of Pcons, prior to incorporating the first 
measurement at t = 0: 
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The initial sigma points at time t = 0, which are positive-and-negative vector pairs for each column 

of the Scons matrix, added to the a-priori best-estimated state vector, are calculated as: 
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and the initial consider sigma points, incorporating just the consider partition of Scons, are: 
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The (2n + 1) measurement points at time t = 0, corresponding to dispersions of the nonlinear 

measurement model G(t, X(t), u(t)) from Eq. (49), are: 
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The mean predicted measurement is given by Eq. (7): 
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The cross-correlation between the a-priori state vector dispersion and the measurement dispersion 

is calculated using Eq. (9), and results in value: 
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⎥
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The measurement model error covariance is given by Eq. (11): 

 
( ) [ ]10tP yy ==          

 
The residual covariance is given by Eq. (12): 

 
( ) [ ]2R)0t(P0tP yy =+===νν        

 
and the Kalman gain is calculated using Eq. (13) as: 
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The covariance matrix, augmented with the cross-correlation and consider parameter covariance 
sub-matrices at t = 0, and updated with the first measurement, is given by Eq. (15): 
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from which we see that the state-consider-parameter cross-correlation submatrix is: 
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Thus, per Eq. (44), the increase in estimated covariance due to the considered parameters is zero 

for the initial time step.  Next, a new, a-posteriori block-Cholesky root is taken of Pxx+(t = 0), resulting in: 
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Then, Scons(t = 0) is used to calculate new sigma points, which will be used to propagate the state 

and covariance forward in time from t = 0 to t = 1: 
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and the initial consider sigma points, incorporating just the consider partition of Scons, are: 
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The sigma points χ and χcons are propagated in time from t = 0 to t = 1, using the system dynamics model, 
Eq. (48): 
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and 
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The quantities Pxx-(t = 1), Pxy(t = 1), Pyy(t = 1), and Pνν(t = 1) are computed in the same manner as for t = 0, 
using the sigma points χ(t = 1).  Pyy(t = 1), Pνν(t = 1), the Kalman gain K(t = 1), and Pxx-(t = 1) are found to 
be: 
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in the same manner as was done for step t = 0.  However, now the consider version of the expected value of 
the state vector is found using χcons(t = 1), per Eq. (41):   
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and the predicted consider covariance matrix, per Eq. (42), is: 
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From the predicted consider covariance matrix, which the predicted cross-correlation sub-matrix is seen to 
be: 
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Then, from Eq. (43), the updated value of the cross-correlation sub-matrix is calculated to be:  
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Finally, applying Eqs. (15), (44) and (46), the estimate-only and consider covariance values for 

epoch t = 1 are found to be, respectively: 
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Note that, despite the very different formulations, the sigma-point consider filter and the linear-
theory consider filter yield identical answers for this example involving a linear system.  The advantages of 
the sigma-point formulation are that the user-supplied inputs are fewer and simpler (i.e. only the nonlinear 
system dynamics model and the nonlinear measurement model are needed) than for the linear-theory filter 
(which requires the same nonlinear models, plus the partial derivatives of the nonlinear models with respect 
to the state vector and considered parameter list).  Hence, the derivation and implementation of the sigma-
point consider filter requires fewer formulation steps than the linear-theory consider filter.  No partial-
derivative code needs be debugged, documented or maintained.  Moreover, the computational run-time 
throughput is similar for the two consider covariance analysis techniques. 
 
 
RESULTS AND CONCLUSIONS 

A novel algorithm for a sigma-point consider filter has been described, and demonstrated with a 
comparison to a simple, standard-form consider filter example from the published estimation theory 
literature.  The algorithm enables consider covariance using a sigma-point filter framework, in which no 
partial derivatives of dynamical models or measurement models are necessary to achieve the same results 
as linear-theory filters on linear problems.  An example problem was used to demonstrate that equivalent 
answers are provided by linear-theory and sigma-point versions of a sequential consider filter when applied 
to a linear problem.  Sigma-point filters have been demonstrated 2,3,4,5 to provide more accurate state 
estimates and covariance representations than linear-theory filters such as extended Kalman filters (EKF’s), 
when applied to estimation of systems with nonlinear dynamics and/or measurement models. 
 

Assessment of the sigma-point consider filter when applied to nonlinear problems, and the overall 
utility of this filtering technique, is a part of planned future work.  This future work will include using the 
sigma-point consider filter in processing inertial measurement unit (IMU) data telemetered to Earth by the 
Mars Reconnaisance Orbiter during its aerobraking operations starting in March, 2006.  Consider 
covariance analysis capability is a significant new addition to sigma-point estimation theory and 
algorithms, as consider covariance is essential for ground-based navigation of deep-space vehicles, which is 
an important prospective future application for sigma-point filters.  Also included in future work is to 
explore re-casting the sigma-point consider algorithm into factorized form, the feasibility of which is 
indicated by the square-root UKF algorithm reported by van der Merwe and Wan8. 
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